

GCE

Geology

Unit F792: Rocks – Processes and Products

Advanced Subsidiary GCE

Mark Scheme for June 2015

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2015

Annotations

Annotation	Meaning
?	Unclear
BOD	Benefit of doubt
CON	Contradiction
×	Cross
ECF	Error carried forward
I	Ignore
NBOD	Benefit of doubt not given
PD	Poor diagram
R	Reject
SEEN	Noted but no credit given
✓	Tick
^	Omission mark
MB	Maximum response

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

Question		ion	Answer			Ma	rks	Guidance
1	(a)	(i)	Processes diagenesis erosion magma accumulation recrystallisation weathering	Processes at the earth's surface (✓) ✓	Processes below the earth's surface ✓ ✓ ✓	1	1	1 mark for each correct column ALLOW diagenesis at the Earths surface as well as below DO NOT ALLOW extra ticks in either column
		(ii)	Processes diagenesis erosion magma accumulation recrystallisation weathering	Rock groupsedimentaryXigneousmetamorphicX		2	2	3 correct = 2 marks 1 or 2 correct = 1 mark
	(b)	(i)	ANY 1 point from where grains are thrown ag where grains are thrown ag where grains by thrown ag where grains are thrown ag	ANY 1 point from where grains are thrown against the ground ; where grains are thrown against rocks ; where grains by thrown against cliffs ; where grains are thrown against hard surfaces ;				ALLOW rocks / pebbles / particles / fragments as alternatives to grains ALLOW rubbing / colliding / hitting / smashed / scrape as alternatives to thrown
	(ii) ANY 1 point from where grains thrown against each other ; where grains are saltated against each other ;			1	1	ALLOW rocks / pebbles / particles / fragments as alternatives to grains ALLOW rubbing / colliding / hitting / smashed / contact as alternatives to thrown		
	(iii) grain becomes rounder / rounded OR grain changes shape from angular to round ; grain becomes smaller / finer OR grain becomes frosted ;				to round ; 1	1	One mark max for two correct diagrams with no correct text One mark max for two correct statements with no correct diagrams	

Q	uesti	ion	Answer	Marks	Guidance
		(iv)	Name saltation ; Description	1	If suspension is stated then ecf ALLOW 1 mark for correct description of this term
			sand grains bounce just above the surface / desert floor / beach OR sand grain picked up and dropped;	1	ALLOW alternative words to bounce such as skip
	(c)	(i)	matrix is sand / mud / sediment / rock fragments deposited between grains OR matrix is sand / mud / sediment / rock fragments that holds the grains together OR matrix is a mixture of minerals between the grains OR matrix is the primary feature of the rock ;	1	ALLOW 1 mark for general statement that describes both cement and matrix without
			cement is minerals precipitated OR cement is crystalline between grains OR cement is minerals that holds the grains together OR cement is monomineralic OR cement is a secondary feature of the rock ;	1	materials eg matrix surrounds the grains and cement is a substance which holds grains together
					ALLOW specific correct named mineral cement (calcite, quartz, hematite)
		(ii)	ANY 1 point from quartz survives the rock cycle :	1	Characteristic must be linked to an explanation
			quartz is chemically resistant OR is most resistant OR quartz is unreactive ;		
			quartz is chemically stable OR is most stable OR is stable at the surface ;		
			quartz is resistant to weathering ;		
			quartz is hard (7);		
			quartz has no cleavage ;		

F792

Question	Answer	Marks	Guidance
(d) (i)	$\begin{bmatrix} -2 & 5 \\ -1 & 12 \\ 0 & 21 \\ 1 & 37 \\ 2 & 58 \\ 3 & 72 \\ 4 & 81 \\ 5 & 100 \\ all points plotted correctly curve drawn \\ \begin{bmatrix} cumulative frequency curve \\ drawn \end{bmatrix}$	1	All values calculated Ecf if values calculated are plotted correctly ALLOW 1 mark max if values plotted are from mass (%)
(ii)	$\frac{2.9 - 2}{2} = \frac{0.9}{2} = 0.45 \qquad \text{OR} \qquad \frac{2.8 - 2}{2} = \frac{0.8}{2} = 0.4$	1	ALLOW any value between 0.45 and 0.4
(iii)	diagram sediment A diagram to show well sorted grains AND sediment B diagram to show very poorly sorted grains ; description sediment A describes well sorted grains as all the same size AND sediment B very poorly sorted grains of many different sizes ;	1	ALLOW 1 mark for A drawn and described and 1 mark for B drawn and described Mark labels on the diagrams as text

Question	Answer	Marks	Guidance
(iv)	environment glacial / wadi / alluvial fan ;	1	ALLOW correct environment if written in explanation
	<u>Any 1 explanation point</u> curve is at low angle OR graph shows material is spread across all sieves ;	1	ALLOW sudden as alternative to rapid
	rapid deposition and close to source OR rapid deposition of all sediment sizes OR rapid deposition so no sorting ;		
	a glacier picks up / transports sediment of all sizes ;		
	as the glacier melts material of all sizes is deposited together;		
	a wadi deposit is caused by a flash flood OR energy lost quickly ;		
	Total	21	

F792

Q	Question		Answer			Mark	s Guidance
2	(a)	(i)	line o to the at 50	line drawn parallel to the edge of the granite at 50m +/- 5m			
		(ii)	anyo	of the 3 areas of sandsto	ne within the granite	1	Label must be within 1mm or touching xenolith or in sandstone xenolith or xenolith circled
	(b)		C D E	rock typespotted rockandalusite rockhornfels	index mineral chlorite / biotite andalusite sillimanite	5	ALLOW spotted slate for C and andalusite slate or andalusite hornfels for D 1 mark for each point apart from D andalusite where 1 mark for both rock and index mineral ALLOW cordierite as alternative to chlorite/biotite ALLOW chiastolite as alternative to andalusite index mineral
	(c)	(i)	quar quar gran	quartzite OR metaquartzite ; quartz OR silica OR silicon dioxide ; granoblastic OR interlocking mosaic of crystals ;			3 points 2 marks 1 or 2 points 1 mark ALLOW sugary OR equigranular
		(ii)	mark the f	ble ; ossils are recrystallised (DR destroyed OR become relict fossils ;	2	DO NOT ALLOW fossils deformed OR melted

Question		on	Answer	Marks	Guidance
	(d)	(i)	Barrovian zones	1	ALLOW Dalradian zones OR
					Barrow's zones
		(ii)	garnet	1	
		(iii)	<pre>slate has fine crystals (<1mm) slatey cleavage composed of two of: clay minerals, muscovite, quartz, chlorite, biotite porphyroblasts of pyrite; schist has medium crystals (1-5mm) schistosity composed of two of: muscovite, quartz, garnet, biotite, kyanite porphyroblasts of garnet; gneiss has</pre>	3	 Name of rock and any 2 descriptors for each rock ALLOW Phyllite as alternative to slate or schist ALLOW 1 mark for all 3 rocks identified with no description ALLOW 1 mark for 3 rocks identified with only 1 descriptor for each
			coarse crystals (>5mm) gneissose banding		
			composed of two of: biotite, quartz, K feldspar, sillimanite, kyanite, hornblende;		ALLOW migmatite as alternative to gneiss
			Total	16	

Question		ion	Answer	Marks	Guidance
3	(a)	(i)	biotite, hornblende, pyroxene and olivine need to be ticked	1	ALLOW mark if 3 out of 4 mafic minerals are correct. No mark if any silicic minerals are ticked
		(ii)	ANY 2 points from K feldspar OR quartz are only found in silicic rocks (granite) ; Ultramafic rocks contain only olivine and pyroxene ; olivine is only found in mafic (basalt) OR ultramafic rocks (peridotite) ; pyroxene is not found in silicic (granite) ; biotite is found in silicic (granite) OR intermediate rocks (diorite) ; hornblende is only found in intermediate rocks (diorite) ; Ca rich plagioclase (feldspar) in mafic (basalt) rocks OR Na rich plagioclase (feldspar) in silicic (granite) rocks ;	2	ALLOW statements for one mineral to compare one rock group with another DO NOT ALLOW answers that include any incorrect minerals
		(iii)	diorite is black and white OR grey in colour AND basalt is black OR dark coloured ; diorite has 52-66 % silica AND basalt has 45-52% silica ;	1	Must have a comparison statement for each ALLOW colour if diorite is lighter than basalt ALLOW correct use of terms melanocratic and mesocratic
		(iv)	Any 1 point from silicic rocks contain low density minerals AND ultramafic rocks contain dense minerals ; ultramafic rocks contain more mafic minerals than silicic rocks ORA ; ultramafic rocks contain denser minerals and are therefore denser ORA ; silicic rocks have an average density of 2.7g/cm ³ AND ultramafic rocks have an average density of 3.3g/cm ³ ;	1	Must have a comparison of rocks for statement that explains, not just gives data from table

F792

Quest	tion		Answer					Guidance					
(b)		All silicic	rocks are coarse gr	ained.		F	3	5 correct = 3 3/4 correct = 2					
		Obsidian	Obsidian is a black, silicic rock.					1/2 correct =1					
		There is a	a high percentage c	of felsic minerals in silicic ro	ocks.	Т							
		The plagi	oclase in silicic rocl	ks is sodium rich.		F							
		Ultramafic igneous r	c rocks have the lov ocks.	west percentage silica of al	l the	т							
(c)	(i)	(i)	(i)) (i)						2	3 correct = 2		
			Igneous	Metamorphic	Sedim	entary		1 /2 correct =1					
		rock 1		V									
		rock 2	✓										
										rock 3	rock 3		
	(ii)	igneous rocks	contain augite OR i	igneous rocks have augite	and plagiocla	ase;	1						
	(iii)	conglomerate	;				1						
I	1					Tota	13						

tion	Answer	Marks	Guidance
(i)	micrite OR micritic limestone ;	1	ALLOW carbonate mud / calcite mud / lime mud
(ii)	<u>low energy</u> because it is sheltered (from the open ocean) OR <u>low energy</u> because it is away from the wind (leeward side) OR <u>low energy</u> because it is protected by the reef OR <u>low energy</u> because waves are prevented from reaching the lagoon OR <u>low energy</u> because breaking waves do not affect the lagoon ;	1	must have energy and explanation
(iii)	<u>rock</u> bioclastic limestone OR fossiliferous limestone ; <u>description</u> broken / fragmented fossils (in a calcite / sparite cement) OR formed from broken / fragmented organic material (from the reef) ;	1	If rock name is incorrect eg reef talus but following description is correct allow 1 mark DO NOT ALLOW oolite due to repetition ALLOW crinoidal limestone / any correct named fossil as example of fossiliferous limestone
(iv)	corals;	1	
(v)	coral / reef grows upwards OR coral / reef forms solid mass OR coral / reef forms continuously over time OR not formed by sediments being laid down OR not deposited and it grows ;	1	
	 labelled on diagram: any 2 labels from: nucleus OR sand grain OR sand particle OR shell fragment OR pellet OR concentric layers OR current OR rolling action OR calcite mud OR oolith ; ANY 2 points from: rolls (backwards and forwards) on sea floor due to wave action / tidal action / bidirectional current OR rolls (backwards and forwards) on sea floor due to (strong) currents OR rolls on sea floor due to rip currents ; gains concentric layers of calcite / aragonite / calcium carbonate ; precipitation of calcite / calcium carbonate from sea water to form cement ; 	1	Mark annotations on diagram as text Do not credit repetition between diagram and description
	distion (i) (ii) (iii) (iii) (iv) (v)	tion Answer (i) micrite OR micritic limestone ; (ii) low energy because it is sheltered (from the open ocean) OR low energy because it is away from the wind (leeward side) OR low energy because it is protected by the reef OR low energy because waves are prevented from reaching the lagoon OR low energy because breaking waves do not affect the lagoon ; (iii) rock (iiii) rock (iii) rock (iiii) rock (iiii) rock (iiii) rock (iiii) rock (iiii) rock (iv) coral / fragmented fossils (in a calcite / sparite cement) OR formed from broken / fragmented organic material (from the reef); (iv) coral / reef grows upwards OR coral / reef forms solid mass OR coral / reef forms continuously over time OR not formed by sediments being laid down OR not deposited and it grows; (v) coral / reef grows upwards OR concentric layers OR current OR rolling action OR calcite mud OR oolith ; ANY 2 points from: nucleus OR sand grain OR sand particle OR shell fragment OR pellet OR concentric layers OR current OR rolling action / bidirectional current OR rolls (backwards and forwards) on sea floor due to wave action / tidal action / bidirectional current OR rolls (backwards and forwards) on sea floor due to (strong) currents OR rolls on sea floor due to rip currents ; gains concentric layers of	tion Answer Marks (i) micrite OR micritic limestone ; 1 (ii) low energy because it is sheltered (from the open ocean) OR low energy because it is away from the wind (leeward side) OR low energy because it is protected by the reef OR low energy because breaking waves are prevented from reaching the lagoon OR low energy because breaking waves do not affect the lagoon; 1 (iii) lock bioclastic limestone OR fossiliferous limestone; 1 (iv) rock 1 1 bioclastic limestone OR fossiliferous limestone; 1 1 (iv) coral; ; 1 1 (iv) coral; reef grows upwards OR coral / reef forms solid mass OR coral / reef forms continuously over time OR not formed by sediments being laid down OR not deposited and it grows; 1 (v) coral / reef grows upwards OR concentric layers OR current OR rolling action OR calcite mud OR oolith ; 1 ANY 2 points from: 1 2 rolls (backwards and forwards) on sea floor due to wave action / tidal action / bidirectional current OR rolls (backwards and forwards) on sea floor due to (strong) currents OR rolls on sea floor due to rip currents ; 2 gains concentric layers of calcite / aragonite / calcium carbonate ; precipitation of calcite / calcium carbonate from sea water to form cement ;<

Question		on	Answer	Marks	Guidance
	(c)	(i)	M gypsum ;	1	
			N halite;	1	
		(ii)	ANY 2 points from:	2	ALLOW sabkhas as alternative
			salts form due to evaporation in warm sea / barred basin / cut off from sea;		environment
			the rate of evaporation is high so that the water becomes more saline/ saturated OR evaporation of water causes an increase in concentration of the ions OR evaporation causes the water to become saturated with salts ;		
			minerals are dense so sink OR dense brines sink ;		
			the most soluble minerals are precipitated out last OR the least soluble minerals are precipitated out first ;		
			sequence of minerals precipitated out is calcite first, gypsum, halite, K salts last;		
			Total	13	

Question		on	Answer	Marks	Guidance
5	(a)	(i)	at a convergent plate boundary OR oceanic-continental plate margin ;	1	ALLOW destructive plate boundary
			ANY 1 point from: where the Nazca plate subducts under the American plate ; where oceanic plate subducts under continental plate ; where the subducting plate (partially) melts to form magma (and the volcano) ;	1	ALLOW Pacific plate as alternative to Nazca
		(ii)	andesite ;	1	
		(iii)	$\frac{description}{there is an increase in SiO_2 content OR}$ the lavas became more silicic ;	1	DO NOT ALLOW a list of data points from graph
			ANY 1 <u>explanation</u> point from: differentiation / fractional crystallisation of the magma produces silicic minerals OR differentiation / fractional crystallisation of the magma makes it richer in quartz and feldspar OR differentiation / fractional crystallisation of the magma produces silica rich magma ;	1	
			silicic minerals are found at top of the magma chamber ; differentiation / fractional crystallisation of the magma as mafic minerals form / erupted first OR differentiation / fractional crystallisation of the magma depletes mafic minerals ; assimilation of the continental crust with <u>magma</u> OR contamination of the <u>magma</u> with continental crust OR mixing of the <u>magma</u> with continental crust ;		ALLOW silicic material or country rock or any correct crustal rock e.g. granite as alternatives to continental crust ALLOW melt as alternative to magma
	(b)	(i)	description the ash is thickest closest to the volcano OR the ash gets thinner away from the volcano OR the ash forms a circular pattern around the volcano ;	1	ALLOW elliptical as alternative to describe shape of ash pattern DO NOT ALLOW ash to the west
			explanation the ash is denser than air so most is dropped close to the volcano OR the circular pattern suggests that there was no strong wind OR ash loses energy with distance ;	1	ALLOW wind from the SE causing ash to spread to NW

Question		on	Answer	Marks	Guidance
		(ii)	steep sides of conical shape angle between 30° and 60° ;	3	
			layers of ash and lava alternating (drawn parallel to sides);		
			any correctly labelled and drawn vent and crater;		
	(c)		ANY 2 points from:	2	DO NOT ALLOW ash blocking the
			ash enters atmosphere and <u>reflects</u> / <u>blocks</u> sunlight ;		sun making it dark for short term
			ash particles cause global cooling OR ash particles stops sun's heat from reaching		weather
			the surface causing cooling;		ALLOW max 1 mark for general
			sulfur dioxide gas released enters atmosphere and forms sulfate particles;		sunlight and cooling
			sulfate aerosols reflect heat energy causing cooling for several years OR worldwide		
			effect of no summers ;		ALLOW sulphuric acid as
			carbon dioxide may cause global warming if <u>very large amounts</u> are produced;		
	(d)		water enters the ground and is heated OR groundwater is heated by magma ;	2	ALLOW max 1 mark for general
			(gas) pressure builds up until water is erupted explosively / suddenly / periodically /		statement of not water erupted
			regularly / water is shot up / due to flash boiling ;		
	(e)		ANY 2 points for one mark from:	1	
			fertile soils OR mineral enriched soil ;		
			geothermal energy;		
			tourist industry to watch activity;		
			building materials OR cave houses in tuff ;		
			formation of mineral deposits OR sulphur mining ;		
I				1	

Question	Answer	Marks	Guidance
(f)	ANY 2 points from:	2	Max 1 for a list (min 2) of correct
	plotting depth lava / ash / pyroclastics deposits from previous eruptions ;		points without concept of plotting
	plotting extent of lava / ash / pyroclastics deposits from previous eruptions;		ALLOW mapping or previous route
	plotting route for lahars;		or historic routes as alternative to
	plotting route for pyroclastic flows / ignimbrites ;		F
	valleys as route for pyroclastic flows / lahars ;		
	plotting route for lava flows;		
	look at historic records for the type / nature / frequency of old eruptions;		
	Total	17	

Question		Answer	Marks	Guidance
6		crystal size intrusive rocks will have medium / coarse crystals AND extrusive rocks will have fine / glassy crystals ;		At least one point must be from this section for full marks
		intrusive (plutonic) rocks will have cooled very slowly / millions of years / at depth / be found in batholiths AND extrusive rocks will have cooled quickly / at the surface / be found in lava flows ;		Comparative statements do not need to be
		intrusive (hypabyssal) rocks will have cooled slowly / thousands of years / at (shallower) depth / be found in dykes / sills AND extrusive rocks will have cooled quickly / at the surface / be found in lava flows ;		ALLOW longer / deeper as comparative
		Only extrusive rocks have glassy texture as this requires very rapid cooling / in water;		statements
		suitable named rocks eg intrusive rocks granite / gabbro / dolerite AND extrusive rocks basalt / andesite / obsidian / rhyolite ;		ALLOW very coarse crystal size in pegmatites / pegmatite veins AND not in extrusive
		textures intrusive rocks can show porphyritic texture with two stages of cooling OR extrusive rocks could be porphyritic texture but with smaller crystals / smaller phenocrysts ;		At least one point must be from this section for full marks
		intrusive rocks rarely have vesicular / amygdaloidal textures AND extrusive rocks commonly have vesicular / amygdaloidal texture ;		
		intrusive rocks rarely have vesicular textures OR extrusive rocks commonly have vesicular texture due to presence of trapped gas bubbles ;		
		intrusive rocks may have amygdaloidal textures OR extrusive rocks commonly have amygdaloidal texture where vesicles are filled by minerals ;		
		intrusive rocks never have flow banding OR extrusive rocks could show flow banding;		
		extrusive rocks could have pillow lavas / aa / blocky / pahoehoe / ropey;		
		intrusive rocks are not bedded OR extrusive rocks can have bedded pyroclasts ;		
		intrusive rocks may show cumulate layers;		

Question	Answer	Marks	Guidance
	margins of the igneous features intrusive rocks will have baked margins in the country rock at both sides AND extrusive rocks will have one baked margin in the country rock below only;		At least one point must be from this section for full marks
	intrusive rocks will have chilled margins at both sides AND extrusive rocks may have one chilled margin only ;		Mark labelled diagram of
	intrusive rocks on a large scale / in a batholith will have a metamorphic aureole around them;		extrusive lava flow as
	intrusive rocks on a large scale / in a batholith will form contact metamorphic rocks around them ;		text
	intrusive rocks may have vesicles distributed throughout AND extrusive rocks may have vesicles at the top ;		
	extrusive rocks may have an uneven / weathered / reddened top;		
	intrusive rocks can be discordant e.g. dyke or batholith AND extrusive rocks will generally be concordant ;		
	intrusive rocks can have xenoliths from rocks above, below or to the side AND extrusive rocks can only have xenoliths from the rocks below ;		
	Total	10	

Question	Answer	Marks	Guidance
7	<u>alluvial fan arkoses and breccias</u> <u>characteristics</u> breccia - 2 points from poorly sorted, coarse grained (>2mm) / rudaceous, angular grain shape, polymict, rock fragments, has a matrix, red colour ; arkose - 2 points from poorly sorted, coarse/medium grained (1-2mm) / arenaceous, angular/sub-angular grain shape, contains K feldspar, rock fragments, quartz, has a matrix, red colour / pink colour ; rocks all texturally and mineralogically immature ; <u>bed features</u> massive beds / crude beds / lenticular beds / lateral variation ;		max 4 For each of the rock types at least 2 characteristics are required Mark labelled diagrams as text
	sedimentary structures no / rare sedimentary structures OR imbricate structure OR cross bedding OR graded bedding; <u>deposition</u> breccias form on scree slopes due to frost shattering / freeze-thaw weathering ; arkoses are deposited rapidly as a result of flash floods / loss of energy / decrease in velocity / change in slope at base of mountains / suitable labelled diagram ; arkose has K feldspar from granite upstream ;		Sedimentary structures must be described or two named

Question	Answer	Marks	Guidance
	channel sandstones characteristics		max 4
	sand - 2 points from moderately / poorly sorted, medium grained (0.0625 to 2mm) / arenaceous, rounded/sub rounded, contains quartz, may contain mica, sand may be mixed with gravel, sand with pebbles at the base ;		For the rock types at least 2 characteristics are required
	bed features erosional base / fining up sequence ; lens shape of channel deposit / channel sand is cross cutting /suitable labelled diagram ;		text
	sedimentary structures point bar sand shows cross bedding OR asymmetrical ripple marks in sands ;		ALLOW imbricate structure if pebbles are described
	deposition form on inside of meander bends OR in slip off slopes OR in point bar deposits ; forms where the current is lower ; forms in sand bars within the channel ;		Sedimentary structures must be described or two named

Question	Answer	Marks	Guidance
	flood plain clays		max 4
	<u>characteristics</u> fine grained / <0.0625mm / silt / argillaceous OR clay minerals form silt / clay / mudstone / shale ; may contain plant <u>fossils</u> / <u>fossil</u> roots / seat earth / black organic clays ;		Mark labelled diagrams as text
	bed features laminated / finely bedded ;		
	sedimentary structures desiccation cracks form where flood deposits dry out ;		
	deposition form when the river floods and when the water retreats a thin layer of silt / clay is left behind ; deposited due to loss of energy when flood spreads out OR deposited over a large flat area ;		Sedimentary structures must be described or two named
i	Total	10	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>:general.qualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553 PART OF THE CAMBRIDGE ASSESSMENT GROUP

