

# GCE

# **Chemistry B (Salters)**

Unit F334: Chemistry of Materials

Advanced GCE

## Mark Scheme for June 2015

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2015

Annotations used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

| Annotation   | Meaning                                                                    |
|--------------|----------------------------------------------------------------------------|
| /            | alternative and acceptable answers for the same marking point              |
| $\checkmark$ | separates marking points                                                   |
| not          | answers which are not worthy of credit and which will CON a correct answer |
| ignore       | statements which are irrelevant and will NOT 'CON' a correct answer        |
| allow        | answers that can be accepted                                               |
| ()           | words which are not essential to gain credit                               |
|              | underlined words must be present in answer to score a mark                 |
| ecf          | error carried forward                                                      |
| AW           | alternative wording (replaces the old 'or words to that effect')           |
| ora          | or reverse argument                                                        |

### Annotations used in scoris:

| Annotation   | Meaning                               |
|--------------|---------------------------------------|
| $\checkmark$ | correct response                      |
| ×            | incorrect response                    |
| bod          | benefit of the doubt                  |
| nbod         | benefit of the doubt <u>not</u> given |
| ECF          | error carried forward                 |
| ٨            | information omitted                   |
| 1            | Ignore                                |
| R            | Reject                                |
|              |                                       |
|              |                                       |

Subject-specific Marking Instructions that apply across the whole question paper to be included here.

| Qu    | Question |    | Answer                                                                                                | Mark | Guidance                                                                                           |  |
|-------|----------|----|-------------------------------------------------------------------------------------------------------|------|----------------------------------------------------------------------------------------------------|--|
| 1 a i |          | i  | ammonia / NH₃ ✓                                                                                       | 1    | NH₄ <sup>+</sup> is a CON<br>DO NOT ALLOW ammonium hydroxide, ammonium salt<br>IGNORE conc., state |  |
| 1     | а        | ii | N (atom) has lone pair (of electrons) ✓<br>which can accept a proton / hydrogen ion /H <sup>+</sup> ✓ | 2    |                                                                                                    |  |
| 1     | b        | i  | addition elimination ✓                                                                                | 1    | ALLOW circles instead of underlining                                                               |  |
| 1     | b        | ii | о=с<br>н                                                                                              | 1    | IGNORE additions to this linkage, but bonds must be shown on C and N.                              |  |

| Question | Answer                                                                                                                                        | Mark | Guidance                                                                                                                                                                                                                                                                                                                 |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 c      | $\begin{array}{c} H \\ O \\ \delta + H \\ \bullet \\$ | 2    | Water must be shown as either H <sub>2</sub> O or HO <sub>2</sub><br><b>DO NOT ALLOW</b> OH or H alone<br>If water is given as <b>HO</b> <sub>2</sub> AND hydrogen bond(s) and detail<br>correct then award 1 mark<br><b>IGNORE</b> bond angles<br>If <b>two</b> examples given, <b>both</b> must be correct for 2 marks |
|          | hydrogen bond between O and H ✓<br>Ione pair AND partial charges ✓                                                                            |      | hydrogen bond must be as shown or dashed/dotted <b>NOT</b><br>a single line<br>lone pair <b>MUST BE</b> in line with hydrogen bond                                                                                                                                                                                       |
| 1 d      | more hydrogen bonds ✓                                                                                                                         | 1    | ALLOW more groups/sites/places which can form H<br>bonds,<br>more electronegative atoms/N and O atoms which can<br>form H bonds<br>DO NOT ALLOW more Os which can form H bonds,<br>bonds more easily                                                                                                                     |
|          |                                                                                                                                               | 8    |                                                                                                                                                                                                                                                                                                                          |

F334

F334

| Qu | iestio | n   | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        | Guidance                                                                                   |
|----|--------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------------------------------------------------------------------------------|
| 2  | а      | i   | ether ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                      |                                                                                            |
| 2  | а      | ii  | HOH <sub>2</sub> C<br>$HOH_2C$<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO | 1                      | ALLOW if adjacent C is also circled                                                        |
| 2  | а      | iii | HOH <sub>2</sub> C<br>HOH <sub>2</sub> C<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2<br>,H<br>,0,,H<br>,1 | AWARD 1 mark if one of the circled OH groups is incorrect but rest of structure is correct |
| 2  | b      | i   | ethanoic acid 🗸                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                      |                                                                                            |

F334

| Questio    | n   | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mark | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 b        | ii  | cellulose triethanoate:         instantaneous dipole-induced dipole       & permanent dipole-         permanent dipole         polyester:                                                                                                                                                                                                                                                                                                      | 2    | ALLOW van der Waals for <u>instantaneous dipole-induced</u><br><u>dipole</u><br>DO NOT ALLOW abbreviations<br>DO NOT ALLOW instantaneous-induced dipole forces<br>unless they have used <u>instantaneous dipole-induced</u><br><u>dipole</u> once<br>ALSO applies to permanent dipoles                                                                                                                                               |
| 2 b<br>2 c | iii | longer chains / length of chains ✓<br>more intermolecular bonds/forces in longer chains ORA ✓<br>OR<br>polymer molecules/chains closer ✓<br>intermolecular bonds stronger ✓ ORA<br>OR<br>shorter monomer chains ✓<br>more intermolecular bonds between polymer chains /<br>intermolecular bonds more frequent along polymer chains ✓<br>at temperatures <u>below</u> polymer's Tg ✓<br>chains / molecules cannot move/slide over one another ✓ | 2    | hydrogen bonding is a CON so does not gain pd-pd mark         NOTE         amount of imb/fs per unit length         will get 1 mark, needs to relate 'more' to 'stronger' for 2nd         mark         NOT how closely, more imbs         may be inferred: linkages closer together         IGNORE references to branch/side groups, crystallinity         and any other factors         IGNORE references to polymers being brittle |
|            |     | chains / molecules break when force applied $\checkmark$                                                                                                                                                                                                                                                                                                                                                                                       |      | <b>NOT</b> polymers break/shatter<br>chains/molecules may be implied by use of 'they' referring<br>to polymer chains                                                                                                                                                                                                                                                                                                                 |

| Question | Answer                                                                                                                                                                       | Mark | Guidance                                                                                                           |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------|
| 2 d      | peak around 3500/3600 / in range 3200-3600 indicates O-H /<br>hydroxyl bond in alcohol<br>✓                                                                                  | 2    | IGNORE references to no O-H peak in range 2500-3200                                                                |
|          | so <b>cellulose diethanoate</b> since only 2 of the 3 OH groups in<br>repeating unit of cellulose have reacted / one OH /<br>no OH groups in cellulose triethanoate ora AW ✓ |      | <b>MUST</b> relate OH group to answer<br><b>DO NOT AWARD</b> this mark if a COOH group is also given<br>as present |
|          |                                                                                                                                                                              |      |                                                                                                                    |
|          |                                                                                                                                                                              | 14   |                                                                                                                    |

F334

| Question |                                                                                                            | Answer                                                                                 | Mark | Guidance                                                                                                                                                                        |
|----------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3 a      | test<br>For C<br>(add neutral)<br>iron(III) chloride                                                       | observations<br>purple colour formed ✓                                                 | 4    | DO NOT ALLOW iron chloride<br>ALLOW violet NOT blue or red                                                                                                                      |
|          | (solution) / FeCl <sub>3</sub> ✓<br><b>For D</b><br>(add) Na <sub>2</sub> CO <sub>3</sub> (s)<br>or (aq) ✓ | solution / mixture fizzes / bubbles /<br>effervesces / (colourless) gas<br>given off ✓ |      | <b>ALLOW</b> NaHCO <sub>3</sub> / K for Na / Ca CO <sub>3</sub> / MgCO <sub>3</sub> / carbonate                                                                                 |
| 3 b i    | HO<br>1 mark for each corre                                                                                | NH3 <sup>+</sup> C/<br>OH<br>ct structure ✓√                                           | 2    | Any clear structure acceptable<br><b>ALLOW</b> NH <sub>3</sub> C <i>l</i> . NH <sub>3</sub> <sup>+</sup><br><b>DO NOT ALLOW</b> an OH group to be bonded to the ring<br>via -HO |

F334

| Questio      | on       | Answer                                                                                                                                                                                                                                                                 | Mark | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Question 3 b | on<br>II | draw <b>pencil-line</b> near bottom of <b>plate/sheet</b> ✓<br>place 1 <b>drop</b> (or similar word) <b>of mixture AND</b> a <b>drop of each</b>                                                                                                                       | 6    | Guidance         please annotate marks given with ticks         ALL marking points may be gained from labelled         diagram(s)         'near bottom' may be implied by what follows         DO NOT ALLOW paper for plate/sheet BUT ecf for further         use         ALLOW draw base-line with pencil                                                                                                                                        |
|              |          | of the 2 compounds (on the line) AW ✓<br>place plate in solvent, <b>line above solvent</b> level <b>AND</b> add<br><b>lid/cover</b> ✓<br>when solvent nears <b>top of plate</b> AW, <b>remove/dry</b> plate ✓<br>locate spots with/ expose to <b>UV light/iodine</b> ✓ |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              |          | <b>compare</b> heights/position of spots from mixture with the two compounds AW OR <b>calculate/measure/determine</b> $R_{\rm f}$ values of spots and <b>compare</b> with those of the two compounds AW $\checkmark$                                                   |      | <ul> <li>any other named locating agent is a CON</li> <li>DO NOT ALLOW 'locating agent' alone</li> <li>DO NOT ALLOW vague statements about comparing spots, MUST refer to positions</li> <li>DO NOT ALLOW vague statements about <i>R</i><sub>f</sub> values</li> <li><i>e.g. R</i><sub>f</sub> values will identify compounds</li> <li>MUST indicate that spot heights or <i>R</i><sub>f</sub> values have been measured AND compared</li> </ul> |

Mark Scheme

| Question | Answer                                                                                                                                                                                                                                                             | Mark | Guidance                                                                                                                                        |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| 3 c i    | <b>1</b> . 4.96 x 10 <sup>-3</sup> to 2.48 x 10 <sup>-3</sup> = 220-30 = <b>190</b> hours $\checkmark$<br><b>2</b> . 3.83 x 10 <sup>-3</sup> to 1.92 x 10 <sup>-3</sup> = 290-100 = <b>190</b> hours $\checkmark$                                                  | 3    | units required for half-lives at least once <b>otherwise</b> 1<br>mark only for both times correct                                              |
|          | half-life constant (means 1 <sup>st</sup> order) ✓<br>OR<br>every 70 hours,                                                                                                                                                                                        |      | DO NOT ALLOW half-life MARK if no relevant data given                                                                                           |
|          | <b>1.</b> from 30-100 hours = about <b>23%</b> of conc. Is used up $\checkmark$<br><b>2.</b> from 220-290 hours = about <b>23%</b> of conc. Is used up $\checkmark$ same proportion of starting conc. used up (means 1 <sup>st</sup> order) $\checkmark$ <b>OR</b> |      | IGNORE units                                                                                                                                    |
|          | every 70 hours (a set time interval) for $1^{st}$ order the concentration drop will be a constant ratio $\checkmark$                                                                                                                                               |      | IGNORE units                                                                                                                                    |
|          | <ol> <li>from 30-100 hours = about 1.295 ✓</li> <li>from 220-290 hours = about 1.292 ✓</li> </ol>                                                                                                                                                                  |      | <b>NOTE</b> any data referring to actual rates cannot be relevant/meaningful                                                                    |
| 3 c ii   | average rate of reaction = <b>(5.55 - 1.92) x 10<sup>-3</sup> / 290</b> ✓<br>= 1.25 x 10 <sup>-5</sup>                                                                                                                                                             | 1    | Give mark for getting the working correct, may make an error with calculator IGNORE units for rate of reaction                                  |
| 3 c iii  | $k = 4.96 \times 10^{-9} / 4.96 \times 10^{-3} = 1.0 \times 10^{-6} \checkmark s^{-1} \checkmark$                                                                                                                                                                  | 2    | <b>ALLOW</b> 1.00 x 10 <sup>-6</sup> or 1 x 10 <sup>-6</sup> or 10 <sup>-6</sup>                                                                |
| 3 d i    | change/alter/different functional/side groups (in structure / formula) ✓                                                                                                                                                                                           | 1    | ALLOW add / remove group(s)<br>IGNORE references to altering shape, specific named<br>groups                                                    |
| 3 d ii   | make a large number of related compounds (together quickly)<br>AW ✓                                                                                                                                                                                                | 1    | <b>DO NOT ALLOW</b> 'test' instead of 'make'<br><b>MUST</b> refer to a large number in some way <i>e.g.</i> many<br><b>NOT</b> just 'compounds' |
|          |                                                                                                                                                                                                                                                                    | 20   |                                                                                                                                                 |

| Questic | on  |                                                | Answer                               | Mark | Guidance                                                                                                                                                                                                                                                                                                                                 |
|---------|-----|------------------------------------------------|--------------------------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4 a     | i   | sulfur dioxide /<br>OR<br>chlorine ✓           | sulfur trioxide                      | 1    | IGNORE formulae<br>ALLOW hydrogen chloride NOT hydrochloric acid or<br>sulfur (di)chloride                                                                                                                                                                                                                                               |
| а       | ii  | compound<br>VS <sub>4</sub>                    | oxidation state<br>of vanadium<br>+4 | 2    | <b>ONLY</b> penalise <b>ONCE</b> for lack of sign sign must be before number, ecf after first error                                                                                                                                                                                                                                      |
|         |     | NaVO <sub>3</sub>                              | +5                                   |      |                                                                                                                                                                                                                                                                                                                                          |
|         |     | Na <sub>2</sub> V <sub>6</sub> O <sub>16</sub> | +5                                   |      |                                                                                                                                                                                                                                                                                                                                          |
|         |     | V <sub>2</sub> O <sub>5</sub>                  | +5                                   |      |                                                                                                                                                                                                                                                                                                                                          |
|         |     | VS₄ correct ✓<br>rest correct ✓                |                                      |      |                                                                                                                                                                                                                                                                                                                                          |
| а       | iii | step 1 ✓                                       |                                      | 2    | more than step 1 is a <b>CON</b> but mark explanation separately                                                                                                                                                                                                                                                                         |
|         |     | oxidation state                                | of V changes/increases ✓             |      | <b>ALLOW</b> electron loss by V<br><b>ALLOW ecf</b> for the $2^{nd}$ mark, from wrong oxidation state<br>for VS <sub>4</sub> in table in <b>aii</b> ,<br><i>e.g.</i> +8 (for VS <sub>4</sub> ) to +5, so oxidation state decreases<br><b>If two steps in first part</b> , both reasons must refer<br>correctly to the data in <b>aii</b> |

| Question | Answer                                                                                                            | Mark | Guidance                                                                                                                                                     |
|----------|-------------------------------------------------------------------------------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a iv     | <b>absorb</b> (specific) <b>frequencies</b> (or wavelengths) in (specific) parts of the <b>visible</b> spectrum ✓ | 2    | MUST use frequency/frequencies/wavelength(s) for 1 <sup>st</sup><br>mark<br>IGNORE any reference to energy levels and electrons<br>ALLOW 'light' for visible |
|          | absorb must be spelled correctly to gain this mark                                                                |      | <b>or</b> any of its variants <i>e.g.</i> absorbed, absorbing, absorption etc.                                                                               |
|          | transmit complementary colour / frequencies (or wavelengths) not absorbed / yellow light ✓                        |      | ALLOW only complementary colour / frequencies (or wavelengths) can be seen<br>DO NOT ALLOW reflect / emit / absorbtion                                       |
| a v      | $V_2O_5 + 5Ca \rightarrow 2V + 5CaO \checkmark$                                                                   | 1    | IGNORE state symbols                                                                                                                                         |
| b        | cooling / lowering / controlling temperature (of contents of furnace) ✓                                           | 1    | ALLOW statements which infer cooling e.g.<br>absorbs heat,<br>prevents furnace getting too hot / thermal shock<br>IGNORE references to cost, landfill        |

| Question | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mark                                      | Guidance                                                                                                                                                                                   |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C İ      | $V^{2+} & V^{3+} \\ \hline V^{2+} & V^{3+} \\ \hline V^{3+} & V^{3+} \\ \hline V^{3$ | <b>4</b><br><sup>+</sup> & H <sup>+</sup> | ALLOW half-cells reversed                                                                                                                                                                  |
| c ii     | $E_{\text{cell}} = 1.26 \text{ V}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                         | IGNORE any sign                                                                                                                                                                            |
| c iii    | temperature is not standard / $25^{\circ}$ C $\checkmark$<br>concentrations of ions in a half-cell are not equal $\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                         | DO NOT ALLOW conditions not standard, must be<br>specific to temperature and/or concentration<br>ALLOW concentration not 1 mol dm <sup>-3</sup><br>DO NOT ALLOW 1 mol(e) for concentration |
| c iv     | $VO_2^+$ + 2H <sup>+</sup> + V <sup>2+</sup> → $VO^{2+}$ + H <sub>2</sub> O + V <sup>3+</sup><br>vanadium species correct ✓<br>equation correct ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                                         | <b>GIVE 1 mark</b> if equation has species and balancing correct but is reversed                                                                                                           |

F334

| Question | Answer                                                                                                                                                                                                                                  | Mark | Guidance                                                                                                                                                                                  |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C V      | VO <sub>2</sub> <sup>+</sup> <b>AND</b><br>$E^{\circ}(I_2/I)$ must be more negative/less positive than the V ion being reduced <b>ORA</b> $\checkmark$                                                                                  | 2    | <b>ORA</b> V half-cell is the only one with a more positive $E^{\circ}$ than the $I_2/I^{-}$ half-cell                                                                                    |
|          | $2VO_2^+ + 4H^+ + 2I^- \rightarrow 2VO^{2+} + 2H_2O + I_2 \checkmark$                                                                                                                                                                   |      | ALLOW balanced equation with ½ l <sub>2</sub><br>IGNORE state symbols                                                                                                                     |
| d i      | moles of $Cr_2O_7^{2^-}$ used = <b>0.02160 x 23.50 / 1000</b> = 0.0005076<br>(5.076 x 10 <sup>-4</sup> ) $\checkmark$<br>moles of Fe <sup>2+</sup> reacted = <b>6</b> x 0.0005076 $\checkmark$ = 0.0030456 (3.0456 x 10 <sup>-3</sup> ) | 5    | <b>DO NOT award marks for random numbers without</b><br><b>any explanation to what they refer to</b><br>marks are for working out shown in bold <b>OR</b> actual<br>answers at each stage |
|          | mass of Fe in alloy = 0.0030456 x <b>55.8</b> ✓ = 0.16994448 g<br>% Fe = 0.16994448 <b>x100 / 0.1750</b> ✓<br>= <b>97.1</b> % ✓                                                                                                         |      | <b>must be 3 sig. figs</b> .<br>97% gains 4 marks, 97.1% 5 marks, irrespective of<br>working                                                                                              |
| d ii     | <b>oxygen / air</b> (and water) will oxidise/change $Fe^{2+}$ (to $Fe^{3+})\checkmark$<br>NaHCO <sub>3</sub> reacts with acid to form CO <sub>2</sub> $\checkmark$<br>air/gas is dispelled which cannot return AW $\checkmark$          | 3    |                                                                                                                                                                                           |
| e i      | green solution ✓<br>forms a green precipitate ✓                                                                                                                                                                                         | 2    | IGNORE any qualifying of green such as pale, dark, dirty,<br>rust etc.<br>ALLOW ppt<br>ALLOW solid for precipitate                                                                        |
| e ii     | Fe <sup>2+</sup> (aq) + 2OH (aq) → Fe(OH) <sub>2</sub> (s)<br>formulae correct & balanced $\checkmark$<br>state symbols correct for precipitation reaction $\checkmark$                                                                 | 2    |                                                                                                                                                                                           |
|          |                                                                                                                                                                                                                                         | 32   |                                                                                                                                                                                           |

F334

| Question | Answer                                                                                                                                                                                                                                                                                               | Mark | Guidance                                                                                                                                                            |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5 a      | <ol> <li>to find out about their relatives / ancestors AW</li> <li>OR</li> <li>to diagnose illness / cure disease AW ✓</li> <li>they are police / criminal suspects AW ✓</li> <li>they have not been prosecuted</li> <li>OR they are innocent</li> <li>OR they have been found not guilty</li> </ol> | 3    | NOTE they may have answered in a different order to the<br>questions in the stem<br>DO NOT ALLOW to be cleared of a crime AW                                        |
|          | OR infringes privacy<br>OR prevents access by other people AW ✓<br>nucleotide ✓                                                                                                                                                                                                                      | 1    | ICNORE any datails of the constituents of publicatides                                                                                                              |
| b i      |                                                                                                                                                                                                                                                                                                      | 1    | <b>IGNORE</b> any details of the constituents of nucleotides                                                                                                        |
| b ii     | HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>H<br>HO<br>H<br>HO<br>H<br>HO<br>H                                                                                                                                                                                                                         | 3    | ALLOW an OH group for an O <sup>-</sup> on phosphate<br>The phosphate <b>MUST</b> be joined at the primary OH<br>ALLOW H <sub>2</sub> O or any bond angle for water |

| Question | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mark | Guidance                                                                                                                                                 |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| С        | base pairs held together by <u>hydrogen bonding/bonds</u> ✓<br>adenine-thymine 2 hydrogen bonds <b>AND</b><br>guanine-cytosine 3 hydrogen bonds ✓<br><b>hydrogen bonds</b> between base pairs <b>break</b> ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5    | May be implied by staying the number of hydrogen bonds<br>in each case<br>different numbers of H bonds is <b>NGE</b>                                     |
|          | (two single) <b>helices / strands</b> are formed ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | May refer to just <b>one strand</b>                                                                                                                      |
|          | each base (on these helices/strands) forms hydrogen bonds<br>to a new (correct/complementary) base AW ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      | <b>IGNORE</b> references to phosphodiester bonds<br><i>i.e.</i> both forming and breaking H bonds have to be<br>mentioned in the answer                  |
| d        | under the forming hydrogen bonds<br>under | 2    | ALLOW any curve with a peak, not necessary to be<br>symmetrical<br>Optimum pH should indicate the <b>peak</b> of graph <b>AND</b> be<br>labelled as such |

F334

| Question | Answer                                                                                               | Mark | Guidance                                                                                                                                                          |
|----------|------------------------------------------------------------------------------------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| e i      | Structure correct - 2 examples shown below                                                           | 1    | ALLOW any correct structure<br>ALLOW without 'spare bonds'<br>ALLOW dipeptide structure which must have its<br>secondary amide/peptide between two chiral C atoms |
|          | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                |      |                                                                                                                                                                   |
| e ii     | ((side) –COOH/carboxyl groups will (lose protons and))<br>form –COO <sup>-</sup> /carboxylate ions ✓ | 1    | also forming $NH_2^+/NH_3^+$ is a <b>CON</b><br><b>ALLOW</b> carboxyl/COOH becomes deprotonated AW                                                                |
|          |                                                                                                      | 16   |                                                                                                                                                                   |

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

**OCR Customer Contact Centre** 

### **Education and Learning**

Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.qualifications@ocr.org.uk</u>

#### www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553



