

GCE

Chemistry B (Salters)

Unit F334: Chemistry of Materials

Advanced GCE

Mark Scheme for June 2014

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2014

Annotations used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
BP	Blank Page – this annotation must be used on all blank pages within an answer booklet (structured or unstructured) and
	on each page of an additional object where there is no candidate response.
/	alternative and acceptable answers for the same marking point
\checkmark	separates marking points
not	answers which are not worthy of credit and which will CON a correct answer
ignore	statements which are irrelevant and will NOT 'CON' a correct answer
allow	answers that can be accepted
()	words which are not essential to gain credit
	underlined words must be present in answer to score a mark
ecf	error carried forward
AW	alternative wording (replaces the old 'or words to that effect')
ora	or reverse argument

Annotations used in scoris:

Annotation	Meaning
\checkmark	correct response
×	incorrect response
bod	benefit of the doubt
nbod	benefit of the doubt <u>not</u> given
ECF	error carried forward
٨	information omitted
1	Ignore
R	Reject

Que	Question		Answer	Mark	Guidance	
1	а		1. Fe \rightarrow Fe ²⁺ + 2e ⁻ \checkmark oxidation \checkmark 2. 2H ₂ O + O ₂ + 4e ⁻ \rightarrow 4OH ⁻ \checkmark reduction \checkmark 3. Fe ²⁺ + 2OH ⁻ \rightarrow Fe(OH) ₂ \checkmark (ionic) precipitation \checkmark	6	MARK reaction TYPE independently of EQUATION IGNORE state symbols ALLOW H_2O + 1/2 O_2 + 2e ⁻ \rightarrow 2OH ⁻ \checkmark ALLOW OXIDISATION, OXIDISE, REDUCE, PRECIPITATE ECF for e used than e ⁻ (<i>i.e. only penalise once</i>)	
	b	i	+3 🗸	1	DO NOT ALLOW 3, Fe ³⁺ or 3+ ALLOW +III NOT III	
	b	ii	low oxygen (concentration in ground around pipes) ✓	1	ALLOW lack of oxygen, or answers that imply not enough oxygen to oxidise Fe to Fe ³⁺ BUT NOT answers implying no oxygen IGNORE water	
	С		iron(II) sulfate/ iron(II) sulfate(VI) ✓	1	ALLOW sulphate IGNORE any formula	
	d	i	 (central) <u>metal</u> ion / cation / atom ✓ bonded to /surrounded by /attached to / linked ligands / negative ions / molecules AW ✓ molecule / ion: which has (at least one) lone pair OR which forms dative (covalent)/coordinate bond ✓ 	4	ALLOW 'species'	
			 (polydentate ligand can form) more than one bond / donate at least two lone pairs to (central) atom/ion OR has more than one atom with a lone pair which are used to bond AW ✓ 		DO NOT ALLOW 'many/multiple/several lone pairs', 'more than 2 lone pairs etc.' AW ALLOW 'has more than 1 attachment site to the central (central) atom/ion'	
	d	ii	[Fe(C ₆ H ₅ O ₇)] [−] correct formula ✓ correct charge (only award if formula is correct) ✓	2	ALLOW without any brackets ALLOW -1 or 1- ALLOW skeletal formula of citrate For 1 st mark ONLY ALLOW charges on metal ion and ligand if correct IGNORE 3 if before the formula for the complex	

Question	Answer	Mark	Guidance
e i	iron/Fe/Fe ²⁺ is oxidised \checkmark because O.S. of Fe changes from <u>+2 to +3</u> \checkmark hydrogen/H is reduced \checkmark because O.S. of H changes from <u>+1</u> to 0 \checkmark	4	 ALLOW answers in terms of loss of an electron – oxidation BUT must have oxidation states/formulae of ions ALLOW Roman numerals and 2+ etc. here DO NOT ALLOW H⁺ is reduced ALLOW gain of an electron – reduction BUT must have oxidation states
e ii	moles of green rust = 100 / (55.8 +34.0) = $1.11 \checkmark$ volume of H ₂ = $1.11 \times 24 / 3 = 8.9 \text{ dm}^3 \checkmark$	2	ALLOW $M_r = 90$ for Fe(OH) ₂ If the only error is incorrect M_r then give 1 mark ALLOW 8.91, 8.88, 8.8 or 9 dm ³ , any sfs Dividing by 3 twice gives 2.96/2.97 for 1 mark
f	$C_{IIIIII} = C_{I} =$	2	IGNORE charges AND brackets around structure DO NOT ALLOW for tetrahedral, angles of 90 ⁰ or all bonds drawn in one plane ALLOW any correctly drawn structure for square planar e.g. C/ C/ Fe C/ for square planar NOTE if you are not sure if it is correct shape give it nbod
	Total	23	

Que	estior	า	Answer	Mark	Guidance	
2	а		 2-hydroxypropanoic acid 2-hydroxy ✓ propanoic acid ✓ 	2	IGNORE 'dashes & commas' & space between 'hydroxy' and 'propanoic' acid DO NOT ALLOW propaneoic acid, hydroxyl, hydroxo	
	b		moles of NaOH = 1.00 x 33.6 / 1000 \checkmark = 0.0336 moles of acid in 25.0 cm ³ = 0.0336 \checkmark moles of acid in sample = 4 x \checkmark 0.0336 = 0.134 mass of acid in sample = 90.0 x \checkmark 0.134 = 12.096 g % by mass = 12.096 x 100 / 25.0 = 48.4 % \checkmark	5	ecf ecf ecf MUST BE 3 sig. figs. for final answer	
	C		mix a constant/fixed/measured volume of B with a constant/fixed/measured volume of each NaOH(aq) AW ✓ zero colorimeter ✓ use suitable/correct filter OR filter of complementary colour ✓ measure absorbance/absorption of sample at known times / over time AW ✓	4	ALLOW calibrate (with water) ALLOW yellow, green or blue filters Complementary must be linked to 'colour' MUST link measurement of absorbance/absorption to time	
	d	i	dilute B by known amounts AW ✓ measure absorbance/absorption ✓ plot graph of absorbance/absorption against [B] /concentration (or [B] v abs.) (to get linear relationship) ✓	3	IGNORE make up standard solutions / solutions of known concentration of B DO NOT ALLOW 'plot a calibration curve' without reference to what is plotted: i.e. absorbance/absorption v concentration IF NaOH used instead of B and then only the 2 nd mark is available	
		ii	1 st order ✓	2	ALLOW gradient/slope halves as concentration halves ALLOW when concentration doubles (reaction) time halves	
			(initial) gradient / slope doubles as concentration doubles AW \checkmark		IGNORE references to rate/half-life (need to use data from graph)	

Que	Question		Answer	Mark	Guidance
		iii	keep [OH [−]] / [NaOH] constant AW ✓ vary/change/alter/double/halve [B] ✓	2	IGNORE 'have excess NaOH' If B not mentioned, it must be clear they are referring to B (see question)
	е	i	(strong) peak at <u>1742</u> indicates <u>C=O</u> \checkmark in ester \checkmark	3	ALLOW carbonyl and hydroxyl for C=O and OH DO NOT ALLOW peak at 1735-1750 or any other range
			(broad) peak between 3200(or 3300)-3600 / at (about) 3400 indicates \underline{OH} \checkmark		IGNORE references to arenes, phenols, alcohols
		ii	purple colour / reaction with Fe(III) indicates phenol \checkmark	1	ALLOW indicates (OH is) phenol DO NOT ALLOW 'alcohol is a phenol'
	f		A has a chiral / asymmetric C / C with 4 different groups ✓	2	ALLOW molecule chiral / A has a chiral centre IGNORE C with 4 different functional groups
			non- <u>superimposable mirror images</u> OR <u>mirror images</u> cannot be <u>superimposed</u> ✓		QWC : superimposable/superimposed must be spelled correctly for second mark
	g	i	it has two functional groups which can react together / undergo condensation OR –OH (alcohol) and COOH (acid) can react together / in one/same molecule (may be implied) AW ✓	2	
			ester ✓		
		ii	biodegradable / breaks down in soil AW ✓	2	DO NOT ALLOW 'decomposes faster' alone IGNORE references to physical properties, water, toxicity
			renewable/ sustainable source for making A /avoids use of fossil fuels etc. / not made from crude oil AW ✓		or atom economy

Question	Answer	Mark	Guidance
h	acidic H_3N H_2 H	3	ALLOW positive charge as shown or on N
	alkaline H_2N CH_2		ALLOW delocalised negative charge or COO ⁻ for carboxylate anion
		31	

Que	Question		Answer	Mark	Guidance
3	а		carbonyl / ketone ✓ ether ✓	2	
	b	i	water 🗸	1	IGNORE H ₂ O
	b	ii	condensation ✓	1	
		iii	<i>T_g</i> = temperature below which (an amorphous) polymer becomes brittle/glassy ✓	5	NOT at which
			above T _g : polymer becomes flexible / will bend ✓ because chains can move/ slide over each other ✓		IGNORE soften(s)
			tangled/less ordered chains cannot move/slide easily across each other AW ORA ✓		This may be implied by combining the last two marking points IGNORE reference to intermolecular forces
			PPO / tangled chains need more energy to move/slide over each other ✓		DO NOT ALLOW more energy to break/separate polymer chains
	С	i	o 	1	IGNORE brackets and any 'n' outside brackets MUST have the two unlinked bonds to the N and C atoms ALLOW -NH , -CO NOT -HN
	С	ii	acylation ✓	1	
	d	i	(secondary) amide 🗸	1	DO NOT ALLOW peptide

Que	Question		Answer		Guidance
		ii	(chains in Twaron are straighter) so chains/molecules are closer together / more tightly packed ✓	2	IGNORE more intermolecular bonds/forces OR more ordered chains OR more crystalline IGNORE more points of contact IGNORE references to energy
			(hydrogen) bonds/intermolecular forces between chains will be stronger ✓		ALLOW 'intermolecular' for 'between chains'
				14	

Que	Question		Answer	Mark	Guidance
4	а	i	(As & P) are in same group (in the periodic table) OR they both have 5/ same number of electrons in the outer shell ✓	1	
	а	ii	H S H H H H H S H S S C H H S H H H H H H H H H H H H H	2	ALLOW without negative charge 'dots and crosses' may be interchanged between As & O DO NOT ALLOWxx for double bond
	а	iii	4 areas of electron density ✓ repel and get as far away from each other as possible AW ✓ tetrahedral ✓ any value in range 107 – 110 ✓	4	ALLOW QWC: third mp can only be scored if first two mp are correct
	а	iv	condensation ✓	1	ALLOW addition-elimination but NOT elimination without addition
	a	V	HO O O O O O O O O	3	ALLOW any correct form of structural formula use of P for As fails to gain 3 rd mark if secondary OH used and no other errors then award 2 marks

Que	Question		Answer	Mark	Guidance
	b	i	H₃AsO₄ ✓	1	 ALLOW any molecular formula with correct atoms e.g. H₂AsO₃OH, AsO(OH)₃ DO NOT ALLOW use of AS for As in parts b and c Penalise first time use then ECF
	b	ii	$H_2AsO_4^- + 2OH^- \Rightarrow AsO_4^{3-} + 2H_2O$ As $O_4^{3-} \checkmark$ rest of equation correct & balanced \checkmark	2	
	b	iii	$H_2AsO_4^- + (2OH^-) \rightarrow (AsO_4^{-3-}) + 2H_2O$	1	ALLOW ECF for incorrect formula for arsenate ion in bii
	С	i	(H ₃ AsO ₄ reacts because) E° / electrode potential for SO ₄ ²⁻ /SO ₂ is more negative than E° for H ₃ AsO ₄ /H ₃ AsO ₃ \checkmark (H ₃ PO ₄ does not react because) E° for SO ₄ ²⁻ /SO ₂ is more positive than E° for H ₃ PO ₄ /H ₃ PO ₃ \checkmark	2	ORA DO NOT ALLOW higher/lower or similar words DO NOT ALLOW E°_{cell} for E° ALLOW E° / electrode potential must be used at least once in the answer ALLOW correct identification of half-cell by one of the reactants only e.g. SO ₂
			OR (using E ^e _{cell} calculations)		
			for $H_3PO_4 E_{cell}^{e} < 0 / (-0.45 V)$ so is not feasible \checkmark		
			for $H_3AsO_4 E_{cell}^{\circ} > 0 / (+0.39 V)$ so is feasible \checkmark		

Question		Answer	Mark	Guidance
	ii	$H_3AsO_4 + H_2O + SO_2$ → $SO_4^{2^-} + 2H^+ + H_3AsO_3$ correct species with no cancelling of H ⁺ / H ₂ O / e ⁻ ✓	2	ALLOW H ₂ SO ₄ on RHS of equation
		all correct ✓		DO NOT ALLOW an equilibrium arrow
d	i	1 st order ✓ because it has a constant half-life ✓	2	2 nd mark depends on 1 st so 'zero order because it has a constant half-life' does not score any marks etc.
d	ii	Evidence is for small molecules OR As-O bonds are not in a small molecule OR As-O bonds may be stabilised/ strengthened by the DNA structure ✓	1	 LOOK FOR either comment on relative size of molecules or stability of As-O bonds ALLOW DNA is not a small molecule – this may be implied
			22	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.qualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

© OCR 2014