GCE

Mathematics (MEI)

Unit 4773: Decision Mathematics Computation
Advanced GCE

Mark Scheme for June 2014

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

	uestio	Answer	Marks	Guidance
1	(iii)	$\begin{aligned} & \lambda^{2}-\lambda+1=0 \\ & \lambda=\frac{1 \pm \sqrt{1-4}}{2}=\frac{1 \pm \sqrt{-3}}{2} \\ & \text { "oscillations" or "cycles" } \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$	$\lambda^{2}-\lambda+1 \mathrm{ft}$ ft if discriminant <0
1	(iv)	$\begin{aligned} & \left.u_{n+2}=u_{n+1}-50+50+\alpha\left(150-u_{n}\right) \quad \text { i.e. } u_{n+2}-u_{n+1}+\alpha u_{n}=150 \alpha\right) \\ & \text { auxiliary equation } \lambda^{2}-\lambda+\alpha=0 \\ & \text { discriminant of auxillary }=1-4 \alpha=0 \text { for } \alpha=0.25 \\ & \text { or } \\ & \text { for getting }(\lambda-0.5)^{2}=0 \text { when } \alpha=0.25 \text {, so only one solution } \end{aligned}$	B1 B1 B1 B1 or (B1B1)	discriminant + soln factorisation + comment
1	(v)	$\begin{array}{r} 130 \\ 115 \\ 120 \\ 128.75 \\ 136.25 \\ 141.5625 \\ 145 \\ 147.1094 \\ 148.3594 \\ 149.082 \\ 149.4922 \\ 149.7217 \\ 149.8486 \\ 149.9182 \\ 149.9561 \end{array}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	by RR by formula

Question		Answer	Marks	Guidance
1	(vi)	130		
		115		
		120	B1	rounding
		129		ronding
		137		
		142		
		145		
		147		
		148		
		149		
		150		
		150		
1	(vii)	OK for demand ≤ 87	B1	

Question			Answer	Marks	Guidance
3	(i)	max M st $\mathrm{M}<65$ $\mathrm{M}<37$ $\mathrm{M}<19$ $\mathrm{M}<54$ $\mathrm{M}<23$ end Gives $\mathrm{M}=19 \ldots$ minimum		B1 B1 B1 B1	entering running $\mathrm{M}=19$ minimum
	(ii)	max Y st M-R1<0 M-R2<0 M-R3<0 M-R4<0 M-R5 <0 Y-M +2 R1 $1+2 R 2+2 R 3+2 R 4+2 R 5=0$ R1>23 R1>42 R1>35 R1>52 R2>23 R2>37 R2>29 R2>43 R3>42 R3>37 R3>18 R3>50 R4>35 R4>29 R4>18 R4>32 R5 >52 R5 >43 R5 >50 R5 >32	M gives the row minimax. The row is given by the subscript on the R_{i} which matches M.	B1 B1 B1 B1 B1 B1	Y constraint M constraints rest running

Question		Answer	Guidance	
$\mathbf{3}$	(iii)	Need the minimax of the shortest distances from each vertex Find the matrix of shortest distances. Need the minimax row (or column). Solve using LP as per part (ii) (or by inspection for this small problem).	B1 B1 shortest distances	
$\mathbf{3}$	(iv)	Best vertices are A, B, D and F (all with a minimax of 8).	B1B1	
$\mathbf{3}$	(v)	Problem size ... big	B1	B1
$\mathbf{3}$	(vi)	e.g. Point midway between A and B has minimax of 6.5. (Or 6 if 0.6 of way from A to B.)	B1	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

