Oxford Cambridge and RSA

GCE

Mathematics (MEI)

Unit 4771: Decision Mathematics 1
Advanced Subsidiary GCE

Mark Scheme for June 2015

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

Annotations and abbreviations

Annotation in scoris	Meaning
\checkmark and \boldsymbol{x}	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0,1
A0, A1	Accuracy mark awarded 0,1
B0, B1	Independent mark awarded 0, 1
SC	Special case
\wedge	Omission sign
MR	Misread
Highlighting	
Other abbreviations in mark scheme	Meaning
E1	Mark for explaining
U1	Mark for correct units
G1	Mark for a correct feature on a graph
M1 dep*	Method mark dependent on a previous mark, indicated by *
cao	Correct answer only
oe	Or equivalent
rot	Rounded or truncated
soi	Seen or implied
www	Without wrong working

Subject-specific Marking Instructions for GCE Mathematics (MEI) Decision strand

Annotations should be used whenever appropriate during your marking.
The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded.

For subsequent marking you must make it clear how you have arrived at the mark you have awarded.
An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct solutions leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly.

Correct but unfamiliar or unexpected methods are often signalled by a correct result following an apparently incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, award marks according to the spirit of the basic scheme; if you are in any doubt whatsoever (especially if several marks or candidates are involved) you should contact your Team Leader.

The following types of marks are available.

M
A suitable method has been selected and applied in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, eg by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

A
Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

B
Mark for a correct result or statement independent of Method marks.

E

A given result is to be established or a result has to be explained. This usually requires more working or explanation than the establishment of an unknown result.

Unless otherwise indicated, marks once gained cannot subsequently be lost, eg wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument
$f \quad$ Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise. Candidates are expected to give numerical answers to an appropriate degree of accuracy, with 3 significant figures often being the norm. Small variations in the degree of accuracy to which an answer is given (e.g. 2 or 4 significant figures where 3 is expected) should not normally be penalised, while answers which are grossly over- or under-specified should normally result in the loss of a mark. The situation regarding any particular cases where the accuracy of the answer may be a marking issue should be detailed in the mark scheme rationale. If in doubt, contact your Team Leader

Rules for replaced work

If a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests

If there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last
(complete) attempt and ignore the others.
NB Follow these maths-specific instructions rather than those in the assessor handbook.
For a genuine misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A mark in the question.

Note that a miscopy of the candidate's own working is not a misread but an accuracy error.

Question			Answer	Marks	Guidance
1	(i)			M1 A1 [2]	At least two directed arcs, each from the top of a lift to the bottom all 4 correct
1	(ii)		(Angus has to repeat all of the chairlifts.) He has to repeat A either because two ski runs deliver skiers to it, or because it serves two ski runs. He has to repeat B and C either because two ski runs deliver skiers to them, or because they serve two ski runs or because of ski run 4.	B1 M1 A1 [3]	
1	(iii)		Angus has to repeat ski run 3 because he has to repeat chairlifts B and/or C (or runs 4 and 5).	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & {[2]} \end{aligned}$	run 3 for explanation
1	(iv)		This would have to be represented by an arc from chairlift C to chairlift D , but in a bipartite graph an arc can only connect two elements which are not in the same set. In this case the sets are chairlifts and ski runs.	B1 [1]	needs to be contextualised

Question				Answer	Marks	Guidance
2	(i)		i 1 2 3 m_{1} 2 c_{1} 8 m_{2} 2 c_{2} 5 m_{3} 4 c_{3} 3 j 1 2 3 a 2 3 4 b 3 4 1 5 d_{1} 2 x_{1} 1 y_{1} 7 d_{2} -2 x_{2} 2.5 y_{2} 13 d_{3} 0 x_{3} y_{3} Print area $(1,7)$ (2.5, 13$)$ parallel	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	M1 A1 B1 B1 B1 M1 A1 $\sqrt{ }$ [7]	$\begin{array}{ll} j & 1 \\ a & 2 \\ b & 3 \\ a \text { s and } b \mathrm{~s} \\ \text { (4's and 5's not essential) } \end{array}$ for 1 and 7 for 2.5 and 13 for 0 use of print area 3 copied, inc "parallel"
2	(ii)		Finds the line intersections		B1 [1]	

Question		Answ	Marks	Guidance
3	(i)	At least 50\% coffee (allow more than) (so number of coffee filters \geq number of tea bags, so number tea bags \leq number of coffee filters.) At most 75\% coffee (allow less than) so number of coffee filters $\leq 3 \times$ number of tea bags, so number of tea bags $\geq 1 / 3 \times$ number of coffee filters.	B1 B1 [2]	referral to sales info to get $\leq($ allow $<)$ referral to sales info + explanation of $1 / 3$ to get $\geq($ allow $>$)
3	(ii)	Let x be the number of coffee filters. Let y be the number of tea bags ... or vice versa.	B1 B1 B1 B1 B1cao [5]	"number of" essential " 500 " line $£ 50$ line lines from (i) shading
3	(iii)	Coffee -75\% of 500. Tea - 50\% of 500.	$\begin{aligned} & \text { B1cao } \\ & \text { [1] } \end{aligned}$	

Question			Answer	Marks	Guidance
4	(b)	(i)	Length $=15$	M1 A1 B1 [3]	tree or attempt at Prim
4	(b)	(ii)	Removes AE, AD, CE then BC	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & {[2]} \\ & \hline \end{aligned}$	$\mathrm{AE}, \mathrm{AD}, \mathrm{CE}$ (in order) BC only
4	(b)	(iii)	It will remain connected. There will be no cycles left. Removing a largest possible arc at each stage guarantees a minimum spanning tree.	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{~B} 1 \\ & {[3]} \\ & \hline \end{aligned}$	
4	(b)	(iv)	$\left(n^{2}-3 n+2\right) / 2$ (or equivalent) arcs for Jill to remove. More than Prim if n is 5 or more	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & {[2]} \end{aligned}$	algebraic simplification not needed

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\begin{tabular}{|l|l|}
\hline \multicolumn{2}{c}{ Question } \\
5 \& (i)\&(ii)
\end{tabular}} \& \multicolumn{14}{|c|}{Answer} \& Marks \& Guidance \\
\hline 5 \& (i)\&(ii) \& minimum comple critical activities \& \begin{tabular}{l}
time \\
, E, F
\end{tabular} \& \[
e=5
\]
\[
\mathrm{F}, \mathrm{G},
\] \& \[
\begin{aligned}
\& \frac{\mathrm{F}}{5} \\
\& 55 \mathrm{~m} \\
\& , \mathrm{H},
\end{aligned}
\] \& \& \[
20
\] \& \[
\frac{I}{30}
\] \& - \& - \& \(\rightarrow\) \& C/45 \& \& \[
\begin{gathered}
50 \\
5 \\
5 \\
55
\end{gathered}
\] \& \[
55
\] \& \begin{tabular}{l}
M1 \\
A1 \\
A1 \\
A1 \\
A1 \\
[5] \\
M1A1 \(\sqrt{ }\) \\
M1A1 \(\sqrt{ }\) \\
B1cao \\
B1cao \\
[6]
\end{tabular} \& \begin{tabular}{l}
activity on arc F \& I \\
J \\
K \\
rest \\
forward pass \\
backward pass \\
time \\
critical activities
\end{tabular} \\
\hline 5 \& (iii) \& e.g. (each cell rep \& \begin{tabular}{l}
ents 5 \\
A
\end{tabular} \& \[
\] \& \begin{tabular}{l}
nut \\
E \\
D \\
C
\end{tabular} \& \begin{tabular}{|l|}
\hline
\end{tabular} \& \begin{tabular}{l}
G \\
I \\
C
\end{tabular} \& \[
\begin{aligned}
\& \\
\& \hline \\
\& \hline \mathrm{I} \\
\& \hline \\
\& \hline \mathrm{C} \\
\& \hline \mathrm{H} \\
\& \hline
\end{aligned}
\] \& I \& I \& I

H \& \[
\mathrm{J}

\] \& K \& \& \& | M1 |
| :--- |
| A1 |
| B1 |
| [3] | \& | A, E, F, G allocated OK |
| :--- |
| B, D, I, J, K OK |
| C and H correctly timed |

\hline 5 \& (iv) \& | e.g. |
| :--- |
| 50 minutes | \& A \& | D |
| :--- |
| B | \& I \& I \& I \& \[

$$
\begin{gathered}
\mathrm{I} \\
\hline \mathrm{G} \\
\hline
\end{gathered}
$$

\] \& I \& I \& J \& \[

\mathrm{K}

\] \& \& \& \& | B1 |
| :--- |
| B1 |
| [2] | \& | a correct schedule for two people |
| :--- |
| 50 minutes seen |

\hline
\end{tabular}

	Ques	Answer	Marks	Guidance
6	(i)	e.g. French $0,1,2,3,4,5,6 \rightarrow$ Greek Greek $0,8,9 \rightarrow$ French $6,7,8,3,9 \rightarrow 5 \rightarrow$ Freek	B1 M1 A1 [3]	French proportions efficient
6	(ii)	Using Greek rule Using French rule e.g. F G G G F G F G G G Computing observed probabilities e.g. $\quad P(F)=0.3$ and $P(G)=0.7$ (Long run probabilities are 6/13 French and 7/13 Greek.)	M1 M1 A1 $\sqrt{ }$ B1 $\sqrt{ }$ [4]	Greek French
6	(iii)	e.g. French $0,1 \rightarrow$ French $2,3,4,5,6,7 \rightarrow$ Greek $8,9 \rightarrow$ Hungarian Greek $0,1,2,3,4 \rightarrow$ French $5,6,7 \rightarrow$ Greek $8,9 \rightarrow$ Hungarian Hungarian $0,1,2 \rightarrow$ French $3,4,5 \rightarrow$ Greek $6,7,8 \rightarrow$ Hungarian $9 \rightarrow$ reject and redraw	B1 B1 M1 A1 A1 [5]	reject one (or more) proportions efficient

6	(iv)	Greek rule applied in correct circumstances and correctly French rule applied in correct circumstances and correctly Hungarian rule applied in correct circumstances and correctly e.g. F F H F G H F G F F so $\quad \mathrm{P}(\mathrm{F})=0.6, \mathrm{P}(\mathrm{G})=0.2, \mathrm{P}(\mathrm{H})=0.2$ (Long run proportions are $56 / 169,74 / 169$ and $39 / 169)$.	B1 B1 B1	B1

B1
B1
B1

B1 $\sqrt{ }$

$[4]$

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee

OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

