

GCE

Mathematics (MEI)

Unit 4757: Further Applications of Advanced Mathematics

Advanced GCE

Mark Scheme for June 2015

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2015

Annotations and abbreviations

Annotation in scoris	Meaning
√and x	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0, 1
B0, B1	Independent mark awarded 0, 1
SC	Special case
^	Omission sign
MR	Misread
Highlighting	
Other abbreviations in	Meaning
mark scheme	
E1	Mark for explaining
U1	Mark for correct units
G1	Mark for a correct feature on a graph
M1 dep*	Method mark dependent on a previous mark, indicated by *
cao	Correct answer only
oe	Or equivalent
rot	Rounded or truncated
soi	Seen or implied
www	Without wrong working

Subject-specific Marking Instructions for GCE Mathematics (MEI) Pure strand

a Annotations should be used whenever appropriate during your marking.

The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded.

For subsequent marking you must make it clear how you have arrived at the mark you have awarded

An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct solutions leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly.

Correct but unfamiliar or unexpected methods are often signalled by a correct result following an *apparently* incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, award marks according to the spirit of the basic scheme; if you are in any doubt whatsoever (especially if several marks or candidates are involved) you should contact your Team Leader.

c The following types of marks are available.

М

A suitable method has been selected and *applied* in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, eg by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

Δ

Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

В

Mark for a correct result or statement independent of Method marks.

Ε

A given result is to be established or a result has to be explained. This usually requires more working or explanation than the establishment of an unknown result.

Unless otherwise indicated, marks once gained cannot subsequently be lost, eg wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.

- When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep *' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.
- The abbreviation ft implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, exactly what is acceptable will be detailed in the mark scheme rationale. If this is not the case please consult your Team Leader.

Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise. Candidates are expected to give numerical answers to an appropriate degree of accuracy, with 3 significant figures often being the norm. Small variations in the degree of accuracy to which an answer is given (e.g. 2 or 4 significant figures where 3 is expected) should not normally be penalised, while answers which are grossly over- or under-specified should normally result in the loss of a mark. The situation regarding any particular cases where the accuracy of the answer may be a marking issue should be detailed in the mark scheme rationale. If in doubt, contact your Team Leader.
- g Rules for replaced work

If a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests.

If there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the others.

NB Follow these maths-specific instructions rather than those in the assessor handbook.

h For a *genuine* misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A mark in the question.

Note that a miscopy of the candidate's own working is not a misread but an accuracy error.

1	(i)	(8) (4)	M1	Finding AB in terms of λ	
		Any point is $\begin{vmatrix} 25 \\ +\lambda \end{vmatrix}$ 15			
		Any point is $\begin{pmatrix} 25 \\ 43 \end{pmatrix} + \lambda \begin{pmatrix} 15 \\ 25 \end{pmatrix}$			
		$= ((8+4\lambda), (25+15\lambda), (43+25\lambda))$			
		$AB = ((8+4\lambda), (25+15\lambda), (43+25\lambda)) - (2,5,4)$	A1		
		$=((6+4\lambda),(20+15\lambda),(39+25\lambda))$			
		Distance AB			
		$= \sqrt{(6+4\lambda)^2 + (20+15\lambda)^2 + (39+25\lambda)^2} = 15$	M1		
		$\Rightarrow 866\lambda^2 + 2598\lambda + 1732 = 0$	A1		
		$\Rightarrow \lambda^2 + 3\lambda + 2 = 0$			
		$\Rightarrow \lambda = -1, -2$			B1 can also be given for verifying
		\Rightarrow B (4,10,18), C (0,-5,-7)	B1	For B	AB = 15 and showing B is on line
			A1	For C	
			6		
	(ii)	AC = [2,10,11]	B1	Or any vector in plane other than BC	
		$\mathbf{n} = \begin{pmatrix} 2\\10\\11 \end{pmatrix} \times \begin{pmatrix} 4\\15\\25 \end{pmatrix} = \begin{pmatrix} 85\\-6\\-10 \end{pmatrix}$	M1	Suitable vector product or other method	
		$\mathbf{n} = \begin{vmatrix} 10 & \times & 15 \end{vmatrix} = \begin{vmatrix} -6 & & & & & & & & & & & & & & & & & & $		for finding normal	
			A1		
		$\Rightarrow 85x - 6y - 10z = c$	AI		
		Sub one value to give c			
		$\Rightarrow 85x - 6y - 10z = 100$	A1		
			4		

(iii)	This plane contains the line BC and n			
	$\begin{pmatrix} 85 \end{pmatrix} \begin{pmatrix} 4 \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix}$	M1	Appropriate vector product oe	
	$\mathbf{n'} = \begin{pmatrix} 85 \\ -6 \\ -10 \end{pmatrix} \times \begin{pmatrix} 4 \\ 15 \\ 25 \end{pmatrix} = \begin{pmatrix} 0 \\ -2165 \\ 1299 \end{pmatrix} = \begin{pmatrix} 0 \\ -5 \\ 3 \end{pmatrix}$	A1	Allow uncancelled vector	
	$\Rightarrow 5y - 3z = c$			
	Sub one value to give c	M1	Must be seen!	
	$\Rightarrow 5y - 3z + 4 = 0$	A1		
		4		
(iv)	$\mathbf{BC} = [-4, -15, -25]$ $\mathbf{AD} = [-1, -4, -1]$	B 1		
	$\mathbf{BC} \times \mathbf{AD} = \begin{bmatrix} 4 & 15 & 25 \\ 1 & 4 & 1 \end{bmatrix} = \begin{bmatrix} -85, 21, 1 \end{bmatrix}$	M1 M1	Finding vector product Finding magnitude, pythagoras must be	
	$ \mathbf{BC} \times \mathbf{AD} = \sqrt{85^2 + 21^2 + 1} = \sqrt{7667}$	A1	N.b. Answer given	
	$\mathbf{AC} = \begin{bmatrix} 2,10,11 \end{bmatrix}$ Distance = $\frac{\left(\mathbf{AC}\right) \cdot \left(\mathbf{BC} \times \mathbf{AD}\right)}{\sqrt{7667}}$	B1	Other vectors possible	
	1	M1		
	$= \left \frac{-170 + 210 + 11}{\sqrt{7667}} \right = \frac{51}{\sqrt{7667}}$	A1	Accept 0.582	
		7		

(A $(2, 5, 4)$, B $(4, 10, 18)$, C $(0, -5, -7)$, D $(1, 1, 3)$ AB = $[2, 5, 14]$			
	$\mathbf{AC} = [-2, -10, -11]$			
	$\mathbf{AD} = \begin{bmatrix} -1, -4, -1 \end{bmatrix}$			
	$Volume = \left \frac{1}{6} (\mathbf{AB} \cdot (\mathbf{CA} \times \mathbf{DA})) \right $	M1	Formula for volume	
	$\mathbf{AC} \times \mathbf{AD} = \begin{bmatrix} -2 & -10 & -11 \\ -1 & -4 & -1 \end{bmatrix} = \begin{bmatrix} -34, 9, -2 \end{bmatrix}$	A1	Vector product	
	$= \left \frac{1}{6} ((2,5,14) \cdot (-34,9,-2)) \right = \left \frac{1}{6} (-68+45-28) \right $			
	$=\frac{51}{6}=\frac{17}{2}$	A1		
		3		

2	(i)	$z = 3x^2 - 12xy + 2y^3 + 60$	M1	For finding both partials and setting
				=0
		$\frac{\partial z}{\partial x} = 6x - 12y = 0 \Rightarrow x = 2y$	4.4	D. d.
			A1	Both
		$\frac{\partial z}{\partial y} = -12x + 6y^2 = 0 \Rightarrow y^2 = 2x = 4y$		
		$\Rightarrow y = 0 \text{ or } 4. \qquad \Rightarrow x = 0 \text{ or } 8.$	M1	Solving simultaneously to get <i>x</i> or <i>y</i>
		$\Rightarrow z = 60 \text{ or } -4$		
		Stationary points at $A(8,4,-4)$,	B 1	Also by verification
		and B(0,0,60)	A1	
			5	
	(ii)(A)	$z = 3x^2 - 12xy + 2y^3 + 60$	M1	For substitution and expansion
		Substitute $x = 8 + h$, $y = 4 + k$		
		$\Rightarrow z_p = 3(8+h)^2 - 12(8+h)(4+k) + 2(4+k)^3 + 60$		
		$=-4+3(h^2-4hk+4k^2)+12k^2+2k^3$	M1	For splitting $24k^2$
		$= -4 + 3(h - 2k)^{2} + 2k^{2}(k + 6)$	A1	For spitting 24k
		113(11 211) 1211 (11 13)	3	
	(ii)(P)	For all values of h and k, $(h-2k)^2 > 0$ and	M1	
	(ii)(<i>B</i>)	For all values of n and k , $(n-2k) > 0$ and $2k^2(k+6) > 0$ providing $k > -6$	M1	Or for small k
		, , ,	A1	Of 101 Silian A
		So $z > -4$ for all values of x and y close to A So is local minimum.	111	
		20 10 10 to 10 10 10 10 10 10 10 10 10 10 10 10 10	3	

	(ii)(<i>C</i>)	When $y = 0$ = $2x^3 + 60$ and so either side of $(0, 0, 60)$	M1	For obtaining functions	
	(II)(C)	When $x = 0$, $z = 2y^3 + 60$ and so either side of $(0, 0, 60)$	A1	For pt of inflexion - can be by sketch	
		the value of z will be greater or less than 60.		To profimienton can be by sheeting	
		When $y = 0$, $z = 3x^2 + 60$ and so either side of $(0, 0, 60)$	A1	For minimum - can be by sketch	
		the value of z will always be greater than 60.			
		So B is a saddle point.	A1		
		<u>*</u>	4		
	(iii)	At (1, 1, 53),	M1	Finding values of derivatives	
		∂z			
		$\frac{\partial z}{\partial x} = 6x - 12y = -6$ $\frac{\partial z}{\partial y} = -12x + 6y^2 = -6$	A 1		
		∂z 12 c 2 c	A1		
		$\frac{-}{\partial y} = -12x + 6y^2 = -6$			
		Equation of tangent plane is:	M1	Eqn of plane	Or -6x - 6y - z = c
					·
		$z - 53 = \frac{\partial z}{\partial x}(x - 1) + \frac{\partial z}{\partial y}(y - 1)$			
		z - 53 = -6x - 6y + 12			
		$\Rightarrow 6x + 6y + z = 65$	A1	ag	
			4		
	(iv)	$\frac{\partial z}{\partial x} = -6$ and $\frac{\partial z}{\partial y} = -6$	M1	Put partial derivatives $= -6$	
		∂x ∂y	A1	Dath aggreet	
		$\Rightarrow x = 2y - 1 \text{ and } y^2 = 2x - 1$	AI	Both correct	
		$\Rightarrow y^2 - 4y + 3 = 0$	M1	Solve simultaneously	
		$\Rightarrow y = 1,3$	A1	Both values	
		$\Rightarrow \text{Coordinates of R } (5,3,9)$			
		\rightarrow Coordinates of K $(3,3,9)$	A1		
			5		
1			3		

3	(i)	$x = a\cos\theta, \ x' = -a\sin\theta, \ x'' = -a\cos\theta$	B1	derivatives	
		$y = b \sin \theta$, $y' = b \cos \theta$, $y'' = -b \sin \theta$			
		$(2.22.23)^{3/2}$			
		$r = \frac{\left((x')^2 + (y')^2 \right)^{3/2}}{x'y'' - x''y'} = \frac{\left(a^2 \sin^2 \theta + b^2 \cos^2 \theta \right)^{3/2}}{-a \sin \theta - b \sin \theta - a \cos \theta - b \cos \theta}$	M1	Apply formula (or for κ)	
		$x'y''-x''y'$ $-a\sin\thetab\sin\thetaa\cos\theta.b\cos\theta$		1.146.1.1	
		$=\frac{\left(a^2\sin^2\theta+b^2\cos^2\theta\right)^{\frac{3}{2}}}{ab}$	M1	Set $\theta = 0$	
		ab			
		At A, $\theta = 0 \Rightarrow r = \frac{\left(a^2 \sin^2 0 + b^2 \cos^2 0\right)^{\frac{3}{2}}}{ab}$	A1	unsimplified	
		$=\frac{(b^2)^{3/2}}{ab}=\frac{b^2}{a}$	A1	ag	
		The centre is on the x-axis r less than a	M1		
		So centre of curvature is at $\left(a - \frac{b^2}{a}, 0\right)$ i.e. $\left(\frac{a^2 - b^2}{a}, 0\right)$	A1		
			7		
	(ii)	Radius = $\frac{a^2}{h}$	B 1		
		Centre is at $\left(0, b - \frac{a^2}{b}\right)$ i.e. $\left(0, \frac{b^2 - a^2}{b}\right)$	B1		
			2		
	(iii)	$\frac{a^2}{b} = \frac{b^2}{a} \Rightarrow a = b$			
		$\frac{1}{b} - \frac{1}{a} \rightarrow u = v$	D1		
		The ellipse is a circle OR the centre of curvature for both	B 1		
		points (and all points) is at (0, 0)	1		
			1		

(i	(iv) $ s = \int_{0}^{\pi/2} \sqrt{\left(\left(\frac{dx}{d\theta}\right)^{2} + \left(\frac{dy}{d\theta}\right)^{2}\right)} d\theta $	M1	Applying formula	
	$= \int_{0}^{\pi/2} \sqrt{\left(\left(a\sin\theta\right)^{2} + \left(b\cos\theta\right)^{2}\right)} d\theta$			
	$= \int_{0}^{\pi/2} \sqrt{\left(a^2 \sin^2 \theta + b^2 \cos^2 \theta\right)} d\theta$	A1		
	$= \int_{0}^{\pi/2} \sqrt{\left(b^2 \sin^2 \theta + b^2 \cos^2 \theta + (a^2 - b^2) \sin^2 \theta\right)} d\theta$	M1	Eliminate $\cos \theta$	
	$=\int_{0}^{\pi/2} \sqrt{\left(b^2 + (a^2 - b^2)\sin^2\theta\right)} d\theta$	A1		
	$=b\int_{0}^{\pi/2}\sqrt{1+\frac{(a^2-b^2)}{b^2}\sin^2\theta}d\theta$			
	$\Rightarrow \lambda^2 = \frac{(a^2 - b^2)}{b^2}$	A1		
	When $a = b$, $\lambda = 0$			
	$\Rightarrow s = b \int_{0}^{\pi/2} d\theta = \frac{1}{2} b\pi$	A1		
	This is a quarter of the circumference of a circle	A1	Or arc length of part of circle	
		7		

(v)	Centre of curvature is at $(a\cos\theta - \rho\sin\psi, b\sin\theta + \rho\cos\psi)$	M1	Parametric equations	Or find equation of normal
	where $\rho = \frac{\left(a^2 \sin^2 \theta + b^2 \cos^2 \theta\right)^{\frac{3}{2}}}{ab}$			
	giving			
	$x = a\cos\theta - \frac{\left(a^{2}\sin^{2}\theta + b^{2}\cos^{2}\theta\right)^{\frac{3}{2}}}{ab} \cdot \frac{b\cos\theta}{\left(a^{2}\sin^{2}\theta + b^{2}\cos^{2}\theta\right)^{\frac{1}{2}}}$	M1 A1	Deal with ψ	Or partial diffn of normal Eqn for x or y
	$\Rightarrow ax = \cos\theta \left(a^2 - \left(a^2 \sin^2\theta + b^2 \cos^2\theta \right) \right)$			
	$= \cos\theta \left(a^2 - b^2\right) \cos^2\theta = \cos^3\theta \left(a^2 - b^2\right)$	A1		
	Similarly $by = \sin^3 \theta (b^2 - a^2)$ $(ax)^{\frac{2}{3}} (by)^{\frac{2}{3}}$	A1 M1		
	$\Rightarrow \left(\frac{ax}{a^2 - b^2}\right)^{\frac{2}{3}} + \left(\frac{by}{a^2 - b^2}\right)^{\frac{2}{3}} = 1 \mathbf{oe}$	A1	i.e. $(ax)^{\frac{2}{3}} + (by)^{\frac{2}{3}} = (a^2 - b^2)^{\frac{2}{3}}$	
		7		

4	(i)	The set is closed.	M1	Attempt to demonstrate closure
		$(a \ b)(c \ d) (ac \ ad + \frac{b}{-})$	A1	Two general and different matrices
		i.e. $ \begin{pmatrix} a & b \\ 0 & \frac{1}{a} \end{pmatrix} \begin{pmatrix} c & d \\ 0 & \frac{1}{c} \end{pmatrix} = \begin{pmatrix} ac & ad + \frac{b}{c} \\ 0 & \frac{1}{ac} \end{pmatrix} $	A1	Correct product therefore shows closure
		Identity is $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ or m(1,0)	B1	
		Each element has an inverse Inverse of $\begin{pmatrix} a & b \\ 0 & \frac{1}{a} \end{pmatrix}$ is $\begin{pmatrix} \frac{1}{a} & -b \\ 0 & a \end{pmatrix}$	M1 A1	Attempt to demonstrate inverse A general matrix and its inverse
			A1	
	(22)	a a madust	7	Demonstration by multiplying 2
	(ii)	e.g. product $ \begin{pmatrix} c & d \\ 0 & \frac{1}{c} \end{pmatrix} \times \begin{pmatrix} a & b \\ 0 & \frac{1}{a} \end{pmatrix} = \begin{pmatrix} ac & cb + \frac{d}{a} \\ 0 & \frac{1}{ac} \end{pmatrix} $	M1 A1	Demonstration by multiplying 2 matrices each way round (one way might be quoted from (i)) 2 correct (and different) products
		OR one numeric example.		
		e.g. $ \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 3 \\ 0 & .5 \end{pmatrix} = \begin{pmatrix} 2 & 4 \\ 0 & .5 \end{pmatrix} \text{ but } \begin{pmatrix} 2 & 3 \\ 0 & .5 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 7 \\ 0 & .5 \end{pmatrix} $		
		So No	A1	Dep on previous 2 marks
			3	

(iii)	e.g. $ \begin{pmatrix} k & b \\ 0 & \frac{1}{k} \end{pmatrix} \begin{pmatrix} k & c \\ 0 & \frac{1}{k} \end{pmatrix} = \begin{pmatrix} k^2 & \dots \\ 0 & \frac{1}{k^2} \end{pmatrix} $	M1 A1	Multiplying 2 matrices in N (Allow matrices the same) Sight of k^2
	This is only in the set N_k if $k^2 = k$ Given $k \neq 0 \Rightarrow k = 1$ only	A1 A1	
		4	
(iv)	$m(1,1)^2 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$	M1 A1	
1		2	
(v)	m(1,0) $m(1,1)$ $m(1,2)$ $m(1,3)$	B1	m(1,0) the identity
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	В3	-1 each error
		4	
(vi)	Group table for R OR Any argument that states that: a, b, c have order 2 reason for this but only one element of P has order 2 B1	В3	-1 each error
	So No	B 1	Dependent on previous B3
		4	

5	(i)	A B C	B2	B1 for two out of three columns correct	
		$(0 \frac{1}{2}, 0)$			
		A 3 0			
		$\mathbf{P} = \mathbf{B} \begin{vmatrix} 1/2 & 1/3 & 1/2 \end{vmatrix}$			
		$\mathbf{P} = \mathbf{B} \begin{pmatrix} 0 & \frac{1}{3} & 0 \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{2} \\ C & \frac{1}{2} & \frac{1}{3} & \frac{1}{2} \end{pmatrix}$			
			2		
	(ii)(A)	$\mathbf{P}^{3}p$	M1	Cube P	Allow M1 for P ⁴
		(0.1388)(1)	A1 A1	Sight of matrix soi	
		$\begin{vmatrix} - & - & & 0 & & & & & & & & $	AI		
		$ \begin{pmatrix} 0.138\dot{8} & - & - \\ - & - & - \\ - & - & - \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} $ gives $0.138\dot{8} \left(= \frac{5}{36} \right)$			
			3		
	$(ii)\overline{(B)}$	$P = M^5 p$			
		(– –	M1 M1	Using diagonal elements from P ⁵	
		$\mathbf{P}^5 = \begin{vmatrix} - & 0.4285 & - \end{vmatrix}$	WII	Using probabilities from 2nd day	
		$\mathbf{P}^{5} = \begin{pmatrix} \dots & - & - \\ - & 0.4285 & - \\ - & - & 0.4286 \end{pmatrix}$			
		$p = 0.5 \times 0.4285 + 0.5 \times 0.4286$	A1	Ft	
		= 0.4286	A1	Cao	
			4		
	(iii)	0.143, 0.429, 0.429	M1	Obtaining equations	Or M1 considering P ⁿ
		$\left(=\frac{1}{7},\frac{3}{7},\frac{3}{7}\right)$	B1	Sight of $x + y + z = 1$ soi	where n is large.(10 or
		(7'7'7)	A1		more)
		Over a long period these are the probabilities that on any			A2 for probabilities, A1 one error
		day at random the inspector is at these factories	B 1		
			4		

(iv) A B C $A \begin{pmatrix} 0.8 & \frac{1}{3} & 0 \\ 0.1 & \frac{1}{3} & \frac{1}{2} \\ 0 & 0.1 & \frac{1}{3} & \frac{1}{2} \\ 0 & 0.455, 0.273, 0.273 \\ \left(= \frac{5}{11}, \frac{3}{11}, \frac{3}{11} \right)$ (v) P(from A to A) = 0.8. So α = 0.8 $\Rightarrow \frac{\alpha}{1 - \alpha} = \frac{0.8}{0.2} = 4$ M1 $\Rightarrow \frac{\alpha}{1 - \alpha} = \frac{0.8}{0.2} = 4$ M1 $\Rightarrow \frac{\alpha}{1 - \alpha} = \frac{0.8}{0.2} = 4$ M1 $\Rightarrow \frac{\alpha}{1 - \alpha} = \frac{0.8}{0.2} = 4$ M1 $\Rightarrow \frac{\alpha}{1 - \alpha} = \frac{0.8}{1 - \alpha} = 0.$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
(v) P(from A to A) = 0.8. So $\alpha = 0.8$ $\Rightarrow \frac{\alpha}{1-\alpha} = \frac{0.8}{0.2} = 4$ M1 A1 For using $\frac{\alpha}{1-\alpha}$ or $\frac{1}{1-\alpha}$ (vi) New transition matrix: A B C $A \begin{pmatrix} 1 & 1/3 & 0 \\ 0 & 1/3 & 1/2 \\ C & 0 & 1/3 & 1/2 \end{pmatrix}$ We need 3^{rd} entry of 2^{nd} row to be < 0.1
(v) P(from A to A) = 0.8. So $\alpha = 0.8$ $\Rightarrow \frac{\alpha}{1-\alpha} = \frac{0.8}{0.2} = 4$ M1 A1 For using $\frac{\alpha}{1-\alpha}$ or $\frac{1}{1-\alpha}$ (vi) New transition matrix: A B C $A \begin{pmatrix} 1 & 1/3 & 0 \\ 0 & 1/3 & 1/2 \\ C & 0 & 1/3 & 1/2 \end{pmatrix}$ We need 3^{rd} entry of 2^{nd} row to be < 0.1
(v) P(from A to A) = 0.8. So $\alpha = 0.8$ $\Rightarrow \frac{\alpha}{1-\alpha} = \frac{0.8}{0.2} = 4$ M1 A1 For using $\frac{\alpha}{1-\alpha}$ or $\frac{1}{1-\alpha}$ (vi) New transition matrix: A B C $A \begin{pmatrix} 1 & 1/3 & 0 \\ 0 & 1/3 & 1/2 \\ C & 0 & 1/3 & 1/2 \end{pmatrix}$ We need 3^{rd} entry of 2^{nd} row to be < 0.1
(v) P(from A to A) = 0.8. So $\alpha = 0.8$ $\Rightarrow \frac{\alpha}{1-\alpha} = \frac{0.8}{0.2} = 4$ M1 A1 For using $\frac{\alpha}{1-\alpha}$ or $\frac{1}{1-\alpha}$ (vi) New transition matrix: A B C $R = B \begin{pmatrix} 1 & \frac{1}{3} & 0 \\ 0 & \frac{1}{3} & \frac{1}{2} \\ C & 0 & \frac{1}{3} & \frac{1}{2} \end{pmatrix}$ We need 3^{rd} entry of 2^{nd} row to be < 0.1
(vi) New transition matrix: A B C $ \mathbf{R} = \mathbf{B} \begin{pmatrix} 1 & 1/3 & 0 \\ 0 & 1/3 & 1/2 \\ C & 0 & 1/3 & 1/2 \end{pmatrix} $ We need 3 rd entry of 2 nd row to be < 0.1 M1 Method by "trial" with new matrix.
(vi) New transition matrix: A B C $ \mathbf{R} = \mathbf{B} \begin{bmatrix} 0 & \frac{1}{3} & \frac{1}{2} \\ 0 & \frac{1}{3} & \frac{1}{2} \end{bmatrix} $ We need 3 rd entry of 2 nd row to be < 0.1
(vi) New transition matrix: A B C $ \mathbf{R} = \mathbf{B} \begin{pmatrix} 1 & 1/3 & 0 \\ 0 & 1/3 & 1/2 \\ C & 0 & 1/3 & 1/2 \end{pmatrix} $ We need 3 rd entry of 2 nd row to be < 0.1 M1 Method by "trial" with new matrix.
(vi) New transition matrix: A B C $ A \begin{bmatrix} 1 & \frac{1}{3} & 0 \\ R = B \\ 0 & \frac{1}{3} & \frac{1}{2} \\ C \\ 0 & \frac{1}{3} & \frac{1}{2} \end{bmatrix} $ We need 3 rd entry of 2 nd row to be < 0.1 M1 Method by "trial" with new matrix.
A B C $ A \begin{pmatrix} 1 & 1/3 & 0 \\ A & 0 & 1/3 & 1/2 \\ C & 0 & 1/3 & 1/2 \\ 0 & 1/3 & 1/2 \end{pmatrix} $ We need 3 rd entry of 2 nd row to be < 0.1 $ M1 \qquad \text{Method by "trial" with new matrix.} $
$\mathbf{R} = \mathbf{B} \begin{pmatrix} 1 & \frac{1}{3} & 0 \\ 0 & \frac{1}{3} & \frac{1}{2} \\ C \begin{pmatrix} 0 & \frac{1}{3} & \frac{1}{2} \\ 0 & \frac{1}{3} & \frac{1}{2} \end{pmatrix}$ We need 3 rd entry of 2 nd row to be < 0.1 M1 Method by "trial" with new matrix.
We need 3^{rd} entry of 2^{nd} row to be < 0.1
We need 3^{rd} entry of 2^{nd} row to be < 0.1
We need 3^{rd} entry of 2^{nd} row to be < 0.1
We need 3^{rd} entry of 2^{nd} row to be < 0.1
We need 3^{rd} entry of 2^{nd} row to be < 0.1
We need 3^{rd} entry of 2^{nd} row to be < 0.1
() () A1 For sight of one value
() () A1 For sight of one value
$ \mathbf{R}^9 = \dots \dots 0.1162 , \mathbf{R}^{10} = \dots \dots 0.0969 $
So 10 days later (which is day 25).
30 10 days later (which is day 23).
(vii) A is the absorbing state. B1
If it goes to A then it stays there. B1 oe
2 2

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge **CB1 2EU**

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 **OCR** is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office

Telephone: 01223 552552 Facsimile: 01223 552553

