

## A-LEVEL Statistics

Statistics 1B – SS1B Mark scheme

6380 June 2014

Version/Stage: Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Copyright © 2014 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

| Μ                       | mark is for method                                                 |
|-------------------------|--------------------------------------------------------------------|
| m or dM                 | mark is dependent on one or more M marks and is for method         |
| A                       | mark is dependent on M or m marks and is for accuracy              |
| В                       | mark is independent of M or m marks and is for method and accuracy |
| E                       | mark is for explanation                                            |
| $\checkmark$ or ft or F | follow through from previous incorrect result                      |
| CAO                     | correct answer only                                                |
| CSO                     | correct solution only                                              |
| AWFW                    | anything which falls within                                        |
| AWRT                    | anything which rounds to                                           |
| ACF                     | any correct form                                                   |
| AG                      | answer given                                                       |
| SC                      | special case                                                       |
| OE                      | or equivalent                                                      |
| A2,1                    | 2 or 1 (or 0) accuracy marks                                       |
| –x EE                   | deduct x marks for each error                                      |
| NMS                     | no method shown                                                    |
| PI                      | possibly implied                                                   |
| SCA                     | substantially correct approach                                     |
| С                       | candidate                                                          |
| sf                      | significant figure(s)                                              |
| dp                      | decimal place(s)                                                   |

## Key to mark scheme abbreviations

## **No Method Shown**

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

## Otherwise we require evidence of a correct method for any marks to be awarded.

| 0     | <b>a 1 4</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             |                       | <i>a</i>                                                                                                                                                |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Q     | Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Marks                       | Total                 | Comments                                                                                                                                                |
| 1     | No MR or MC in this question                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             |                       |                                                                                                                                                         |
| (a)   | Ordered data:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |                       |                                                                                                                                                         |
|       | 3.3       3.6       3.7       3.8       3.9       4.0       4.1       4.5         4.6       4.7       4.8       4.9       5.0       5.1       5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M1                          |                       | May be near printed values<br>If seen, then $\geq 5$ correctly ordered<br>If not seen, then can be implied from<br>$\geq 1$ of M, UQ, LQ or IQR correct |
|       | Median = <u>4.5</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A1                          |                       | CAO                                                                                                                                                     |
|       | UQ = 4.9 $LQ = 3.8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A1                          |                       | Either CAO; ignore notation<br>Can be implied by $IQR = 1.1$                                                                                            |
|       | $IQR = \underline{1.1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A1                          | 4                     | CAO                                                                                                                                                     |
| Notes | <b>1</b> If values are not ordered, then $M = 5.2$ , $UQ = 3.3$ and $LQ = 2$ If answers are not identified, then assume that order of values $M = 10^{-10}$ M = $10^{-10}$ M = | = 4.5 so IQ<br>les is media | R = (-)1.2<br>an, IQR | $\Rightarrow$ M0                                                                                                                                        |
| (b)   | Range = $5.2 - 3.3 = 1.9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | B1                          | 1                     | CAO                                                                                                                                                     |
| Note  | <b>1</b> If values are not ordered, then Range = $0.2 \Rightarrow B0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |                       |                                                                                                                                                         |
| (c)   | All values are different/each value occurs once/<br>there is no mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B1                          | 1                     | OE                                                                                                                                                      |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |                       |                                                                                                                                                         |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Total                       | 6                     |                                                                                                                                                         |

SS1B--MS-June14 v0.3

| 0             | Solution                                                                | Marks | Total | Comments                                                                                                                                 |
|---------------|-------------------------------------------------------------------------|-------|-------|------------------------------------------------------------------------------------------------------------------------------------------|
| 2             | No MR or MC in this question                                            |       |       | Accept %age equivalents in (a)(i) to (iii)                                                                                               |
| (a)           | <u>Time, <math>X \sim N(7.5, 1.6^2)</math></u>                          |       |       |                                                                                                                                          |
| (i)           | $P(X < 10) = P\left(Z < \frac{10 - 7.5}{1.6}\right)$                    | M1    |       | Standardising 10 with 7.5 and 1.6 but allow $(7.5 - 10)$ ; $z^2 \Rightarrow M0$                                                          |
|               | = P(Z < 1.5625) = 0.94                                                  | A1    | (2)   | AWRT (0.94091)                                                                                                                           |
| ( <b>ii</b> ) | P(X > 6) = P(Z > -0.9375) = P(Z < 0.9375)                               | M1    |       | <b>Correct</b> area change; 0.9375 or correct standardising are <b>not</b> required Can be implied by final <b>answer</b> > <b>0.5</b>   |
|               | = <u>0.82 to 0.83</u>                                                   | A1    | (2)   | AWFW (0.82575)                                                                                                                           |
| (iii)         | P(5 < X < 10) = P(Z < 1.5625) - P(Z < -1.5625) =                        |       |       |                                                                                                                                          |
|               | (i) $- [1 - (i)]$ or $1 - 2 \times [1 - (i)]$<br>= $[2 \times (i)] - 1$ | M1    |       | OE; any <b>correct</b> difference in areas<br>using (a)(i) or $P(5 < X < 10)$<br>Can be implied by a <b>correct</b><br>final answer      |
|               | $= 2 \times 0.94091 - 1 = = 0.88$                                       | A1    | (2)   | AWRT (0.88182)                                                                                                                           |
|               |                                                                         |       | 6     |                                                                                                                                          |
| (b)           | $80\% (0.8) \implies z = 0.84$                                          | B1    |       | AWRT; ignore sign (0.8416)                                                                                                               |
|               | $P(Y < 15) = P\left(Z < \frac{15 - \mu}{2.4 \text{ or } 1.6}\right)$    | M1    |       | Standardising 15 with $\mu$ and (2.4 or 1.6) but allow ( $\mu$ – 15)                                                                     |
|               | $\left(\frac{15-\mu}{2.4}\right) = 0.84(16) \text{ or } 1.28(16)$       | m1    |       | Equating expression with $\sigma = 2.4$ to<br>either <i>z</i> -value ( <i>ignore sign</i> )<br>Can be implied by a <b>correct</b> answer |
|               | $\mu = 12.95 \text{ to } 13$                                            | A1    | 4     | AWFW (12.9802)<br>Must be consistent signs throughout                                                                                    |
|               |                                                                         |       |       |                                                                                                                                          |
|               |                                                                         | Total | 10    |                                                                                                                                          |

SS1B-MS-June 14 v0.3

| Q             | Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Marks                  | Total | Comments                                                                |  |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------|-------------------------------------------------------------------------|--|
| 3             | No MR or MC in this question                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |       |                                                                         |  |
| (a)           | b (gradient/slope) = <u>0.85</u><br>b (gradient/slope) = <u>0.8 to 0.9</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | B2<br>(B1)             |       | AWRT (0.85055)<br>AWFW                                                  |  |
|               | a (intercept) = 94.6  to  94.8<br>a (intercept) = 93  to  97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | B2<br>(B1)             |       | AWFW (94.69602)<br>AWFW                                                 |  |
|               | Attempt at $\sum x  \sum x^2  \sum y  \&  \sum xy$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |       | 254 6924 1163 & <b>29942</b><br>(all 4 attempted) $(\sum y^2 = 135693)$ |  |
|               | or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (M1)                   |       |                                                                         |  |
|               | Attempt at $S_{xx}$ & $S_{xy}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |       | 472.4 & 401.8<br>(both attempted) (S <sub>m</sub> = 436.1)              |  |
|               | Attempt at <b>correct</b> formula for $b$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (m1)                   |       |                                                                         |  |
|               | b = 0.85 (AWRT) $a = 94.6$ to 94.8 (AWFW)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (A1 A1)                |       | $(\overline{x} = 25.4 \& \overline{y} = 116.3)$                         |  |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        | 4     |                                                                         |  |
|               | <ul> <li>3 Award 4 marks for y = (94.6 to 94.8) + 0.85 or for (94.6 to 94.8) + 0.85x</li> <li>4 Values of a and b interchanged and equation y = ax + b stated in (b) ⇒ max of 4 marks</li> <li>5 Values of a and b interchanged and equation y = a + bx stated in (b) ⇒ 0 marks</li> <li>6 Values are <b>not</b> identified or simply b/a = # and a/b = #, then 0.8 to 0.9 ⇒ B1 and 93 to 97 ⇒ B1 but accept, for example, as identification, [b = #, a = # with y = a + bx but no substitution for b &amp; a] or [slope/gradient(b) = #, intercept(a) = #]</li> <li>7 Answers in fractions can score at most M1 m1</li> <li>8 Some/all of marks can be scored in (b) &amp; (d), even if some/all of marks are lost in (a), but marks lost in (a) cannot be recouped by subsequent working in (b) or (d)</li> </ul> |                        |       |                                                                         |  |
| (b)           | $y_{30} = \frac{120 \text{ to } 120.5}{y_{30}}$<br>$y_{30} = \frac{117 \text{ to } 123}{y_{30}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | B2<br>(B1)             | 2     | AWFW (120.21253)<br>AWFW                                                |  |
| Note          | <b>1</b> If, and only if, B0, then award M1 for seen use of $y =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $a + b \times 30$      |       |                                                                         |  |
| (c)(i)        | Extrapolation<br>BMI is outside/above range<br>45 is outside/above range of BMI or x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B1                     |       | OE; accept references to sample/data but not to population              |  |
| ( <b>ii</b> ) | Extrapolation<br>Age is outside/above range<br>50 is outside/above range of age                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | B1                     | 2     | OE; accept references to sample/data but not to population              |  |
| Notes         | <b>1</b> Extrapolation only stated in each of (i) & (ii) $\Rightarrow$ B1 B0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        | 2     | <b>2</b> Two debateable answers $\Rightarrow$ B1 max                    |  |
| (d)           | $r_{20} = 117 - (a + b \times 20) = \frac{5.3}{5 \text{ to } 6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | B2<br>(B1)             | 2     | AWRT; do not ignore sign (5.29297)<br>AWFW; ignore sign                 |  |
| Note          | <b>1</b> If, and only if, B0, then award M1 for seen use of $\pm [11]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $7 - (a + b \times 2)$ | 0)]   | 1                                                                       |  |
| (e)           | As 2.71/(mean) value is small (in comparison to <i>y</i> -values), estimate is likely to be (quite/fairly/very/extremely) accurate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B1                     | 1     | OE; justification & conclusion                                          |  |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |       |                                                                         |  |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        | 11    |                                                                         |  |

| 0             | Solution                                                                                                                                               | Marks                                                                                           | Total                             | Comments                                                                             |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------|
| 4             | No MR or MC in this question                                                                                                                           |                                                                                                 |                                   |                                                                                      |
|               | <b>X</b>                                                                                                                                               | -                                                                                               |                                   |                                                                                      |
| Notes         | <ol> <li>Percentage answers must be penalised by 1 accuracy main</li> <li>Ratio answers (eg 4:5) are only acceptable in (a) and m</li> </ol>           | <b>rk</b> at first <b>c</b><br>ust be penal                                                     | orrect answ<br>ised by <b>1 a</b> | er only if no indication of percentage shown<br>ccuracy mark at first correct answer |
| (a)(i)        | $P(\geq 1) = 0.70 + 0.55 - 0.45 =$                                                                                                                     | M1                                                                                              |                                   | OE; eg $0.25 + 0.45 + 0.1$                                                           |
|               | <u>0.8 or 4/5 or 80%</u>                                                                                                                               | A1                                                                                              | (2)                               | CAO                                                                                  |
| ( <b>ii</b> ) | P(=1) = (i) - 0.45 = 0.25 + 0.1                                                                                                                        |                                                                                                 |                                   |                                                                                      |
|               | <u>0.35 or 35/100 or 7/20 or 35%</u>                                                                                                                   | AF1                                                                                             | (1)                               | F on (i) $0$                                                                         |
|               |                                                                                                                                                        |                                                                                                 | 3                                 |                                                                                      |
| Note          | 1 If answers to (i) & (ii) are correct but reversed, then awar                                                                                         | d M1 A0 A                                                                                       | AF0                               | Ι                                                                                    |
| (b)           | $P(A) \times P(M) = 0.70 \times 0.55 \text{ or } 0.385$                                                                                                | B1                                                                                              |                                   | OE                                                                                   |
|               | $0.385 \neq 0.45 \text{ or } < 0.45$                                                                                                                   | B1                                                                                              | 2                                 | Must compare to 0.45 OE <b>and</b> compare 'like with like'                          |
| Notes         | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                  | $\begin{array}{c} = \underline{0.55} \Rightarrow \\ = \underline{0.70} \Rightarrow \end{array}$ | B1 for any<br>B1 for any          | 2 (OE) values, B1 for comparison<br>2 (OE) values, B1 for comparison                 |
| (c)(i)        | $P(AMBN) = (0.45 \text{ or } 0.385 \text{ or } 0.70 \times 0.55) \\ \times 0.85 \times 0.65$                                                           | M1                                                                                              |                                   | Can be implied by a <b>correct</b> answer<br>Ignore any integer multipliers (eg 4)   |
|               | = <u>0.248 to 0.25 or 24.8% to 25%</u>                                                                                                                 | A1                                                                                              | 2                                 | AWFW (0.248625)                                                                      |
| Notes         | <ol> <li>Use of 0.385 gives an answer of 0.2127125 (0.212 to 0.2</li> <li>The 3 correct terms identified but not multiplied (eg additional)</li> </ol> | $\begin{array}{l} 13 \text{ AWFW} \\ \text{ded} \end{pmatrix} \Rightarrow M \end{array}$        | $\Rightarrow$ M1 A<br>10 A0       | 0                                                                                    |
| ( <b>ii</b> ) | P(A'M'B'N')<br>= P(A'M') × P(B'N') = p × P(B'N')                                                                                                       |                                                                                                 |                                   |                                                                                      |
|               | p = 0.2                                                                                                                                                | B1                                                                                              |                                   | CAO; can be implied from working or from a <b>correct</b> answer                     |
|               | $p \times (0.15 \times 0.35)$                                                                                                                          | M1                                                                                              |                                   | $0Can be implied by a correct answerIgnore any integer multipliers (eg 4)$           |
|               | = <u>0.01 to 0.011 or 1% to 1.1%</u>                                                                                                                   | A1                                                                                              | 3                                 | AWFW (0.0105)                                                                        |
| Notes         | es 1 Use of $p = 0.3 \times 0.45 = 0.135$ gives answer of 0.0070875 (0.007 AWRT) $\Rightarrow$ B0 M1 A0                                                |                                                                                                 |                                   |                                                                                      |
|               | 2 The 3 correct terms identified but not multiplied (eg ad                                                                                             | $\frac{\text{ded}}{\text{Teta}} \Rightarrow B$                                                  | 1 M0 A0                           |                                                                                      |
|               |                                                                                                                                                        | Total                                                                                           | 10                                |                                                                                      |

SS1B-MS-June 14 v0.3

| 0             | Solution                                                                                                                                                                                                                                                                              | Marks                                           | Total                                      | Comments                                                                                                          |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| 5             | No MR or MC in this question                                                                                                                                                                                                                                                          | 11111111                                        | 1000                                       | Comments                                                                                                          |
| (a)<br>(i)    | $r = \frac{0.848 \text{ to } 0.849}{0.84 \text{ to } 0.86}$ $r = \frac{0.84 \text{ to } 0.86}{0.8 \text{ to } 0.9}$                                                                                                                                                                   | B3<br>(B2)<br>(B1)                              |                                            | AWFW (0.84856)<br>AWFW<br>AWFW                                                                                    |
|               | Attempt at $\sum x \sum x^2 \sum y \sum y^2$ & $\sum xy$<br>or<br>Attempt at $S_{xx} S_{yy}$ & $S_{xy}$                                                                                                                                                                               | (M1)                                            |                                            | 696 46896 1128 129832<br>& <b>76001</b> (all 5 attempted)<br>6528 23800<br>& <b>10577</b> (all 3 attempted)       |
|               | Attempt at substitution into <b>correct</b><br>corresponding formula for $r$<br>r = 0.848 to 0.849                                                                                                                                                                                    | (m1)<br>(A1)                                    | 3                                          | AWFW                                                                                                              |
| ( <b>ii</b> ) | (Fairly/quite) <b>strong positive</b><br>(linear) correlation                                                                                                                                                                                                                         | Bdep1                                           |                                            | Dependent on $0.8 \le r < 0.9$<br>OE; must qualify strength<br>and state positive                                 |
|               | Shop X (daily) takings and Shop Y (daily)<br>takings of two shops<br>or<br>(daily) takings of (two) shops                                                                                                                                                                             | B1                                              | 2                                          | Context<br>OE; providing $-1 < r_{xy} < 1$                                                                        |
| Notes         | <ol> <li>Only accept phrase stated; ignore additional comments un</li> <li>Use of: "very/extremely/relatively strong or high or big</li> <li>Accept "relationship/association/link" but not "trend" in</li> <li>Do not accept "£x" and "£y" without further identification</li> </ol> | less contrad<br>or good o<br>stead of "co<br>on | ictory<br>r moderate<br>orrelation"        | or medium or average" $\Rightarrow$ Bdep0                                                                         |
| (b)           | Scatter diagram 4 points correct & labelled<br>3 or 2 points correct & labelled                                                                                                                                                                                                       | B2<br>(B1)                                      | 2                                          | Deduct 1 mark if not labelled                                                                                     |
| (c)           | Days <b>D</b> & <b>I</b><br><b>Day D</b> : more shoppers or increased takings<br><b>Day I</b> : fewer shoppers or reduced takings                                                                                                                                                     | B1<br>B1<br>B1                                  | 3                                          | OE<br>OE                                                                                                          |
| Notes         | <b>1</b> D stated with valid reason & I stated with valid reason =<br><b>3</b> D & I stated with no (matching) reasons $\Rightarrow$ B1 B0 B0                                                                                                                                         | ⇒ B3                                            | 2 I&D sta<br>4 I&D sta                     | ated with valid matching reasons $\Rightarrow$ B1 B1 B1<br>ated with no (matching) reasons $\Rightarrow$ B0 B0 B0 |
| (d)(i)        | $r = \frac{407.5}{\sqrt{1292.5 \times 3850.1}} =$                                                                                                                                                                                                                                     | M1                                              |                                            |                                                                                                                   |
|               | <u>0.182 to 0.183</u>                                                                                                                                                                                                                                                                 | A1                                              |                                            | AWFW (0.18267)                                                                                                    |
| ( <b>ii</b> ) | <b>Some</b> /(fairly/quite/very) <b>weak or little or slight</b> (almost) <b>no/hardly any</b> (positive) correlation                                                                                                                                                                 | Bdep1                                           | 3                                          | Dependent on $0.1 \le r < 0.2$<br>OE; must <b>qualify strength</b>                                                |
| Notes         | <ol> <li>Only accept phrases listed; ignore additional comments un</li> <li>Use of: "low or small or poor or bad or unlikely or n</li> <li>Accept "relationship/association/link" but not "trend" in</li> </ol>                                                                       | lless contrad<br>elatively"<br>stead of "co     | lictory<br>$\Rightarrow B0$<br>prrelation" | Γ                                                                                                                 |
|               |                                                                                                                                                                                                                                                                                       | Total                                           | 13                                         |                                                                                                                   |

SS1B-MS-June 14 v0.3

| Q          | Solution                                                                                                                                                              | Marks                                                 | Total                                                         | Comments                                                                                                             |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| 6          | No MR or MC in this question                                                                                                                                          |                                                       |                                                               | Accept percentage equivalents in (a) & (b)                                                                           |
| (a)        | Use of B(26, 0.06) or B(50, 0.15)                                                                                                                                     | M1                                                    |                                                               | Indicated by an expression <b>or</b> by any one probability in (a) <b>or</b> (b)                                     |
|            | $P(M = 2) = {\binom{26}{2}} (0.06)^2 (0.94)^{24}$                                                                                                                     | M1                                                    |                                                               | Correct expression<br>Can be implied by a <b>correct</b> answer<br>Ignore extra terms                                |
|            | = <u>0.265</u>                                                                                                                                                        | A1                                                    | 3                                                             | AWRT (0.26501)                                                                                                       |
| (b)<br>(i) | P(I < 10) = 0.791                                                                                                                                                     | B1                                                    | (1)                                                           | AWRT (0.7911)                                                                                                        |
| (ii)       | P(I > 5) = 1 - (0.2194  or  0.1121)                                                                                                                                   | M1                                                    |                                                               | Requires "1 – probability"<br>Accept 3 dp rounding<br>Can be implied by (0.78 to 0.781)<br>but <b>not</b> by (0.888) |
|            | = 0.78  to  0.781                                                                                                                                                     | A1                                                    | (2)                                                           | AWFW (0.7806)                                                                                                        |
| SC         | For calculation of individual terms: award B2 for 0.78 to 0                                                                                                           | .781 AWFW                                             | /; award B                                                    | 1 for 0.888 AWRT                                                                                                     |
| (iii)      | P(6 < I < 12) = 0.9372  or  0.9699 (p <sub>1</sub> )                                                                                                                  | M1                                                    |                                                               | Accept 3 dp rounding<br>May be implied by a <b>correct</b> answer                                                    |
|            | <b>MINUS 0.3613 or 0.2194</b> ( <i>p</i> <sub>2</sub> )                                                                                                               | M1                                                    |                                                               | Accept 3 dp rounding<br>May be implied by a <b>correct</b> answer                                                    |
|            | = <u>0.575 to 0.577</u>                                                                                                                                               | A1                                                    | (3)                                                           | AWFW (0.5759)                                                                                                        |
| Notes      | <ul> <li>1 First M1 is for (+ p<sub>1</sub>) in calculation</li> <li>2 Second M1</li> <li>4 B(50, 0.15) probabilities shown for at least 3 values with Ans</li> </ul> | is for $(-p_2)$<br>in $5 \le X \le 1$<br>x = 0.575 to | ) in calcula<br>$12 \Rightarrow M_2^2$<br>$0.577 \Rightarrow$ | tion 3 $(1-p_2) - (1-p_1) \Rightarrow M1 M1 (A1)$<br>2 May be implied by a <b>correct</b> answer<br>A1               |
|            | x         5         6         7 $\mathbf{P}(X=x)$ 0.1073         0.1419         0.1575                                                                                | 8<br>0.1493                                           | 9<br>0.1230                                                   | 10         11         12           0.0890         0.0571         0.0327/8                                            |
|            |                                                                                                                                                                       |                                                       | 6                                                             |                                                                                                                      |
| (c)        | Chain (or Farokh's): Mean = $50 \times 0.15 = \frac{7.5}{1000000000000000000000000000000000000$                                                                       | B1                                                    |                                                               | CAO (6.375)                                                                                                          |
|            | or $SD = 2.52 \text{ to } 2.53$                                                                                                                                       | B1                                                    |                                                               | AWFW                                                                                                                 |
|            | (Farokh's) mean < Chain's mean<br>or 4.33 < C's mean                                                                                                                  | B1                                                    |                                                               | Not available for incorrect labelling                                                                                |
|            | (Farokh's) Var/SD < Chain's Var/SD<br>or 3.94 < C's Variance                                                                                                          | B1                                                    |                                                               | Not available for incorrect labelling<br>(1.98 to 1.99) < C's SD                                                     |
|            | <b>Farokh's store</b> (performance) is <b>better</b> than that of the supermarket chain as a whole                                                                    | Bdep1                                                 | 5                                                             | Dependent on previous four B1 marks                                                                                  |
| SC         | A correct comparison of 433 with 750 or (0.086 to 0.087)                                                                                                              | ) with 0.15                                           | scores B1 H                                                   | 30 B1 B0 Bdep0                                                                                                       |
|            |                                                                                                                                                                       | Total                                                 | 14                                                            |                                                                                                                      |
|            |                                                                                                                                                                       | IUIAI                                                 | 14                                                            |                                                                                                                      |

| 0             | Solution                                                                                                                                                                                                                                                                                                            | Marks                                                                                                        | Total                                                            | Commonts                                                                                                                                   |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| 7             | No MR or MC in this question                                                                                                                                                                                                                                                                                        |                                                                                                              | 10141                                                            | Comments                                                                                                                                   |
| ,<br>(a)      | Mid-points (x):                                                                                                                                                                                                                                                                                                     |                                                                                                              |                                                                  |                                                                                                                                            |
|               | 37.5       42.5       47.5       52.5       57.5       62.5       67.5         72.5       77.5       82.5       87.5       92.5       97.5                                                                                                                                                                          | M1                                                                                                           |                                                                  | May be near printed table<br>If seen, then $\geq 5$ correct<br>If not seen, then can be implied from<br>mean of 62.9 or 67.5 or from 10065 |
|               | Mean = <u>62.9</u>                                                                                                                                                                                                                                                                                                  | A1                                                                                                           |                                                                  | AWRT (62.90625)                                                                                                                            |
|               | SD = 12.3  to  12.4                                                                                                                                                                                                                                                                                                 | B2                                                                                                           | 4                                                                | AWFW (12.3234 or 12.3621)                                                                                                                  |
| Notes         | <b>1</b> $\sum fx = 10065$ and $\sum fx^2 = 657450$                                                                                                                                                                                                                                                                 |                                                                                                              |                                                                  |                                                                                                                                            |
|               | <ul> <li>2 Using <i>LCB</i>-values or <i>UCB</i>-values and <i>f</i>-values gives M</li> <li>3 Using only <i>x</i>-values gives Mean = 67.5 and SD = 18.7 t</li> <li>4 Using only <i>f</i>-values gives Mean = 12.3 and SD = 8.6 t</li> <li>5 If, and only if, M0 A0 B0, then award M1 for seen attended</li> </ul> | ean = 65.0 c<br>o 19.5 $\Rightarrow$<br>to 9.0 $\Rightarrow$<br>npt at $\sum f$                              | or 70.0 and<br>M1 A0 B0<br>M0 A0 B0<br>( <i>LCB</i> to <i>UC</i> | $SD = 12.3 \text{ to } 12.4 \implies M0 \text{ A0 } B2$<br>B)÷160                                                                          |
| (b)(i)        | 98% (0.98) $\Rightarrow z = 2.32 \text{ to } 2.33$                                                                                                                                                                                                                                                                  | B1                                                                                                           |                                                                  | AWFW (2.3263)                                                                                                                              |
|               | CI for $\mu$ is $\overline{x} \pm z \times \frac{s \text{ or } \sigma}{\sqrt{n \text{ or } (n-1)}}$                                                                                                                                                                                                                 | M1                                                                                                           |                                                                  | Used; must $\div \sqrt{n}$ with $n > 1$<br>Evaluation of only one CL $\Rightarrow$ M0                                                      |
|               | (C's-mean) $\pm$ (2.05 to 2.33) $\times \frac{(C's-SD)}{\sqrt{160 \text{ or } 159}}$                                                                                                                                                                                                                                | AF1                                                                                                          |                                                                  | F on (a)                                                                                                                                   |
|               | Thus 62.9 ± (2.32 to 2.33) × $\frac{(12.3 \text{ to } 12.4)}{\sqrt{160 \text{ or } 159}}$                                                                                                                                                                                                                           | A1                                                                                                           |                                                                  |                                                                                                                                            |
|               | Hence $\underline{62.9 \pm (2.2 \text{ to } 2.4)}$<br>or $\underline{(60.5 \text{ to } 60.7, 65.1 \text{ to } 65.3)}$                                                                                                                                                                                               | Adep1                                                                                                        | _                                                                | AWRT/AWFW (±2.2735)<br>Dependent on previous A1<br>AWFW                                                                                    |
| No.4          | 1 Use of turbue of $(2.24 \text{ to } 2.25)$ since $(2.2 \rightarrow \text{D1 M1})$                                                                                                                                                                                                                                 |                                                                                                              | 5                                                                |                                                                                                                                            |
| notes         | <b>1</b> Use of <i>t</i> -value of (2.54 to 2.55) gives $\pm 2.5 \Rightarrow$ BTMT<br><b>2</b> A correct answer with no working (ignore (a)) $\Rightarrow$ B1 M                                                                                                                                                     | AFT AT AT<br>11 AF1 A1 .                                                                                     | A1                                                               |                                                                                                                                            |
| ( <b>ii</b> ) | <b>Clear correct comparison</b> of <b>61.7</b> with <b>CI</b> eg 61.7 is within CI or LCL < 61.7                                                                                                                                                                                                                    | BF1                                                                                                          |                                                                  | F on CI providing it <b>contains</b> 61.7<br>Must be an <b>interval</b> but quoting<br>values for limits is <b>not</b> required            |
|               | Disagree with claim <b>or</b> reason to doubt claim                                                                                                                                                                                                                                                                 | Bdep1                                                                                                        | 2                                                                | OE; dependent on BF1                                                                                                                       |
| Notes         | <ol> <li>Statement must clearly indicate that "61.7 is within the C</li> <li>"It/mean/value/etc" is within CI ⇒ BF0</li> <li>Statements of the form "61.7 is within 98% of the data"</li> <li>Statements such as "Claim unlikely/unreasonable/unsupport</li> </ol>                                                  | $\begin{array}{l} \text{CI'' OE} \\ \Rightarrow & \text{BF0} \\ \\ \hline \text{orted/incorrec} \end{array}$ | ect/false/imp                                                    | oossible/invalid" ⇒ Bdep1 providing BF1                                                                                                    |
|               |                                                                                                                                                                                                                                                                                                                     |                                                                                                              |                                                                  |                                                                                                                                            |
|               |                                                                                                                                                                                                                                                                                                                     | Total                                                                                                        | 11                                                               |                                                                                                                                            |