

## A-LEVEL **STATISTICS**

Statistics 5 – SS05 Mark scheme

6380 June 2014

Version/Stage: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Copyright © 20yy AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

| Q | Solution                                                                                                                                                                                                         | Marks | Total | Comments                                                                          |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-----------------------------------------------------------------------------------|
| 1 | $s = 38.2 \text{ or } s^2 = 1460$                                                                                                                                                                                | B1    |       | awfw 38.2~38.3 or 1450 ~ 1460<br>accept $\sum (x - \overline{x})^2 = 16100$ (3sf) |
|   | $H_0: \ \sigma = 30$ $H_1: \ \sigma \neq 30$                                                                                                                                                                     | B1    |       | Both hypotheses o.e.; must use $\sigma$                                           |
|   | $\frac{(n-1)S^2}{\sigma^2} = \frac{11 \times 38.2^2}{30^2}$                                                                                                                                                      | M1    |       | M1 "their" $\frac{11s^2}{\sigma^2}$ .                                             |
|   | $= \frac{16065.66}{30^2}$<br>= 17.85                                                                                                                                                                             | A1    |       | awfw 17.8 ~17.9                                                                   |
|   |                                                                                                                                                                                                                  | B1    |       | B1 for 11 df; <i>p</i> value 0.170 ~ 0.175                                        |
|   |                                                                                                                                                                                                                  | B1,B1 |       | B1 for each $\chi^2$ value; awfw 3.81~3.82<br>and 21.9~22.0                       |
|   | 3.816 < 17.8 < 21.92 accept H <sub>0</sub><br><u>Insufficient evidence</u> at the 5% level to doubt<br>that the <u>standard deviation</u> of <u>volumes of milk</u><br>delivered by the machine <u>is 30ml</u> . | A1    |       | All correct and statement in context.<br>Comparison with <u>both</u> ends.        |
|   |                                                                                                                                                                                                                  |       | 8     |                                                                                   |

| Q           | Solution                                                                                                                                                              | Marks          | Total    | Comments                                                               |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------|------------------------------------------------------------------------|
| <b>2(a)</b> | $H_0: \mu_{females} - \mu_{males} = 1.5 cm$                                                                                                                           | B1             | 2        | B1 : an inequality <u>and</u> 1.5                                      |
|             | $H_1: \mu_{females} - \mu_{males} > 1.5 cm$                                                                                                                           | B1             | 2        | B1 : both correct                                                      |
| (b)         | t.s. = $\frac{(8.54 - 6.28 - 1.5)}{\sqrt{\left(\frac{0.6^2}{10} + \frac{0.6^2}{8}\right)}}$<br>= 2.67                                                                 | M1<br>M1<br>A1 |          | numerator , allow "8.54 – 6.28" seen<br>denominator<br>awfw 2.67~2.675 |
|             | z = 2.3263                                                                                                                                                            | B1             |          | Ignore sign ,<br>p - value : 0.00378 ~ 0.00379                         |
|             | 2.67 > 2.3263 - reject H <sub>0</sub>                                                                                                                                 | A1             |          | comparison of correct cv with correct t.s; both + ve or both - ve.     |
|             | Sufficient evidence at 1% level to suggest that<br>the <u>mean length of female toads</u> is more than<br>1.5cm greater than the <u>mean length of male</u><br>toads. | E1dep          |          | Statement in context – dependent on previous A1.                       |
|             |                                                                                                                                                                       |                | 6        |                                                                        |
|             |                                                                                                                                                                       |                | 8        |                                                                        |
|             | Notes:<br>Hypotheses: must use μ or population mean.<br>Allow <i>f</i> and <i>m</i> as suffices but other suffices onl                                                | y if clearl    | y assign | ed.                                                                    |

| Q               | Solution                                                        | Marks | Total | Comments                                          |
|-----------------|-----------------------------------------------------------------|-------|-------|---------------------------------------------------|
| <b>3(a) (i)</b> | mean = 0                                                        | B1    |       | cao                                               |
|                 | s.d = $\sqrt{\frac{(0.5 - (0.5))^2}{12}}$                       | M1    |       | or $\sqrt{\frac{1}{12}}$ ; must have square root  |
|                 | s.d = $\sqrt{\frac{12}{12}}$<br>= $\frac{1}{\sqrt{12}}$ = 0.289 | A1    |       | $\frac{1}{\sqrt{12}}$ or awfw 0.288 ~0.289        |
|                 |                                                                 |       |       | s.c. B1 for $\frac{1}{12}$ identified as variance |
|                 |                                                                 |       | 3     |                                                   |
| ( <b>ii</b> )   | 1 - (0.6) or $0.2 + 0.2$                                        | M1    |       | B1 for 0.2 or 0.6 seen                            |
|                 | = 0.4                                                           | A1    |       |                                                   |
|                 |                                                                 |       | 2     |                                                   |
| <b>(b</b> )     | Error more than 0.3                                             | M1    |       | Must be using rectangular distribution.           |
|                 | P(X > +0.3) = 0.2                                               | A1    | 2     | or 0.4 ÷2                                         |
|                 |                                                                 |       |       |                                                   |
|                 |                                                                 |       | 7     |                                                   |

| Q   | Solution                                                                         | Marks    | Total | Comments                                                                                                                                                                                                       |
|-----|----------------------------------------------------------------------------------|----------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4   | x=511.5                                                                          | B1       |       | cao                                                                                                                                                                                                            |
|     | $s = 11.7$ , $s^2 = 137$ or $\sum (x - \overline{x})^2 = 1230$                   | B1       |       | awfw 11.69~11.71, 136~ 137 or 1230~1231                                                                                                                                                                        |
|     | v = 9<br>$t_9 = 2.262$                                                           | B1<br>B1 |       | B1 for 9 df                                                                                                                                                                                                    |
|     | CI: 511.5 $\pm$ 2.262 $\times \frac{11.7}{\sqrt{10}}$                            | M1       |       | M1 : Use of their $\frac{s}{\sqrt{10}}$                                                                                                                                                                        |
|     |                                                                                  | m1       |       | m1 : method for interval ; allow incorrect t <sub>9</sub> value                                                                                                                                                |
|     | [503,520] or 511.5 ± 8.36                                                        | A1       | 7     | awfw (503.0~503.2, 519.8 ~520 or<br>511.5 ± 8.362 ~ 8.365)                                                                                                                                                     |
| (b) | $\chi_9^2 = 3.325,16.919$<br>CI limits for variance:                             | B1       |       | either                                                                                                                                                                                                         |
|     | $\frac{9 \times 11.7^2}{16.919}, \frac{9 \times 11.7^2}{3.325}$                  | M1<br>m1 |       | M1: method for interval – condone one small<br>slip eg $10s^2$<br>m1: correct expression - condone use of<br>4.168 and 14.584 for (incorrect) $\chi_9^2$ values                                                |
|     | CI for sd:                                                                       | m1       |       | m1: method for sd                                                                                                                                                                                              |
|     | [8.53,19.2]                                                                      | A1       | 5     | A1both : awfw 8.52~8.54,19.2~19.4                                                                                                                                                                              |
| (c) | There is no reason to doubt that Ahmed is filling his punnets with a mean of 515 | B1 ft    | 5     | B1ft: comment about "their" CI in (a)                                                                                                                                                                          |
|     | grams of strawberries as 515grams is<br>within Ahmed's confidence interval       | E1dep    |       | E1 dep comment in context dep. A1 in (a)<br>accept eg: "Ahmed is filling his punnets with<br>a sufficient <u>mean</u> weight of strawberries"<br>or "Ahmed's <u>mean</u> packed weight is<br>OK/good/suitable" |
|     | The weights of strawberries in Ahmed's punnets have too much variability as      | E1dep    |       | E1dep : below CI dep A1 in (b)                                                                                                                                                                                 |
|     | 5g is below the lower limit of the<br>confidence interval for Ahmed's sd.        | E1dep    |       | E1dep : comment on CI in (b) in context dep<br>A1 in (b) ;<br>accept eg Ahmed's packing is too <u>variable</u> in<br>weight<br>or "Ahmed's punnets need to be more<br><u>consistent</u> in weight "            |
|     |                                                                                  |          | 4     |                                                                                                                                                                                                                |
|     |                                                                                  |          | 16    |                                                                                                                                                                                                                |

| Q            | Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Marks    | Total | Comments                                                       |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|----------------------------------------------------------------|
| <b>5</b> (a) | $s_{\rm k} = 0.680$ $s_{\rm a} = 0.646$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | B1       |       | awfw 0.679 ~ 0.680, 0.646 ~ 0.647                              |
|              | $(s_k^2 = 0.462 \ s_a^2 = 0.418)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |       | (0.462 ~ 0.463,0 .417~ 0 .418)                                 |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |       |                                                                |
|              | $H_0: \sigma_k^2 = \sigma_a^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |       | Both hypotheses.                                               |
|              | $H_1: \sigma_k^2 \neq \sigma_a^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B1       |       | Use of other suffices must be clearly                          |
|              | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N/I      |       | defined. $M_1 = m_1^2$                                         |
|              | t.s. $F = \frac{0.680^2}{0.646^2} = 1.107$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M1<br>A1 |       | M1 : using their $s^2$<br>A1 : awfw 1.10 ~ 1.11                |
|              | df 6,8 c.v. = 4.652                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B1,B1    |       | p- value 0.868~ 0.869                                          |
|              | ui 0,0 c.v. – 4.052                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D1,D1    |       |                                                                |
|              | Accept $H_0$ , there is no significant evidence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |       |                                                                |
|              | that the samples come from populations with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | E1dep    |       | E1: conclusion in context, dependent                           |
|              | different variances.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |       | on A1 for t.s. and B1 for cv                                   |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | 7     |                                                                |
| <b>(b)</b>   | $\overline{x}_k = 9.77$ $\overline{x}_a = 9.14$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | B1       |       | Both means                                                     |
|              | a second se |          |       | awfw (9.77~ 9.78 , 9.14~ 9.15)                                 |
|              | $H_{\rm et}$ $\mu_{\rm e}$ = $\mu_{\rm e}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |       | Both hypotheses Use of other                                   |
|              | $ \begin{aligned} H_0: \ \mu_k &= \mu_a \\ H_1: \ \mu_k &> \mu_a \end{aligned} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B1       |       | Both hypotheses. Use of other suffices must be clearly defined |
|              | Pooled variance:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |       |                                                                |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M1A1     |       | awfw 0.436 ~ 0.437 ( $s_p = 0.660 \sim$                        |
|              | $s_p^2 = \frac{6 \times 0.680^2 + 8 \times 0.646^2}{7 + 9 - 2} = 0.437$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |       | 0.661)                                                         |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M1       |       | M1 (numerator)( accept 9.14 - 9.77)                            |
|              | 977-914                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |       |                                                                |
|              | $t = \frac{9.77 - 9.14}{\sqrt{0.437(\frac{1}{7} + \frac{1}{9})}} = 1.88$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ml       |       | m1 (denominator – ft on their $S_p^2$ but                      |
|              | $\sqrt{\sqrt{0.43/(7+9)}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |       | must have 1/7 and 1/9.)                                        |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A1       |       | A1 :awfw 1.88 ~ 1.89, ignore sign                              |
|              | 1.245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |       | ignore sign                                                    |
|              | $cv t_{14} = 1.345$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B1       |       | <i>p</i> -value : 0.0403~0.0404                                |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |       | A1dep; comparison and conclusion;                              |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A1dep    |       | dependent on A1 for t.s. and B1 for                            |
|              | 1.88 > 1.345 reject H <sub>0</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Aruch    |       | cv. (signs must be consistent with the                         |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |       | alternative hypothesis.)                                       |
|              | evidence at 10% level that Kanwar's car                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |       |                                                                |
|              | travels, on average, more miles to the litre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | E1dep    |       | E1 conclusion in context; dependent                            |
|              | than Ashok's car                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Lidep    |       | on previous A1                                                 |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | 10    |                                                                |
| (c)          | Not reasonable: miles travelled per litre of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | E1       |       |                                                                |
|              | petrol does not depend on distance travelled.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |       |                                                                |
|              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | 1     |                                                                |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | 18    |                                                                |

| Q       | Solution                                                                                                                                                                  |        |         |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | Total                                                                          | Comments                                                             |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|----------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------|
| 6(a)(i) | P(X>2) = 1 - 0.6767                                                                                                                                                       |        |         |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                                                                                | B1: $\lambda = 2$ used                                               |
|         |                                                                                                                                                                           |        |         |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M1             | 3                                                                              | M1 : 1 - 0.6767 ( allow 1 - 0.4060)                                  |
|         | = 0.323                                                                                                                                                                   |        |         |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A1             | 5                                                                              |                                                                      |
|         |                                                                                                                                                                           |        |         |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                                                                                | awfw (0.323~0.324)                                                   |
| (ii)    | Email                                                                                                                                                                     | s mus  |         | depend   |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | B1             | _                                                                              | B1: Any 2 correct assumptions                                        |
|         | occur at a constant rate                                                                                                                                                  |        |         |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | E1             | 2                                                                              | E1: assumptions in context                                           |
|         | occur at random                                                                                                                                                           |        |         |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | D 1            |                                                                                |                                                                      |
| (b)     | H <sub>0</sub> : da                                                                                                                                                       | ta car | n be mo | delled b | y an exp                   | ponential                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B1             |                                                                                | B1 both hypotheses (accept mean = $7.5$ )                            |
|         | distrib                                                                                                                                                                   | ution  | with pa | aramete  | $r \lambda = \frac{2}{15}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                                                                                | 7.5)                                                                 |
|         |                                                                                                                                                                           |        |         |          | 10                         | exponential                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | B1             |                                                                                |                                                                      |
|         |                                                                                                                                                                           |        |         |          | $r \lambda = \frac{2}{15}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DI             |                                                                                | B1: $\lambda = \frac{2}{15}$ seen or used: accept $\frac{1}{7.5}$ or |
|         |                                                                                                                                                                           |        | 1       |          | 15                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                                                                                | 0.133 or better                                                      |
|         |                                                                                                                                                                           | -      | - ( )   | _        | (a. 5.) <sup>2</sup>       | $()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 ()^2 $ | M1             |                                                                                | M1: method for probabilities ; at                                    |
|         | x                                                                                                                                                                         | 0      | P(x)    | E        | (O - E ) <sup>2</sup>      | (O-E) <sup>2</sup> /E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1011           |                                                                                | least one value correct.                                             |
|         | 0 -                                                                                                                                                                       | 124    | 0.3297  | 105.50   | 342.3394                   | 3.2450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | m1             |                                                                                | m1 expected values ft "p" $\times$ 320                               |
|         | 3 -                                                                                                                                                                       | 82     | 0.2210  | 70.72    | 127.3028                   | 1.8002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                                                                                |                                                                      |
|         | 6 -                                                                                                                                                                       | 51     | 0.1857  | 59.43    | 71.1355                    | 1.1969                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | m1             |                                                                                | m1 combining classes "30 and over"                                   |
|         | 10 -                                                                                                                                                                      | 31     | 0.1283  | 41.04    | 100.8778                   | 2.4578                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | m1             |                                                                                | m1 attempt at $(O - E)^2$                                            |
|         | 15 -                                                                                                                                                                      | 16     | 0.0659  | 21.07    | 25.7311                    | 1.2211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                                                                                |                                                                      |
|         | 20 -                                                                                                                                                                      | 11     | 0.0512  | 16.37    | 28.8767                    | 1.7636                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | m1             |                                                                                | m1 dividing $(O - E)^2$ by E and                                     |
|         | >30                                                                                                                                                                       | 5      | 0.0183  | 5.86     | 0.7413                     | 0.1265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                                                                                | summing – at least 2 values seen.                                    |
|         |                                                                                                                                                                           |        |         | Total    |                            | 11.8110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 1            |                                                                                |                                                                      |
|         |                                                                                                                                                                           |        |         |          |                            | A1<br>D16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | All correct and awfw 11.8 ~12.0                                                |                                                                      |
|         | v = 7 - 1 = 6<br>$\chi_6^2 = 10.645$                                                                                                                                      |        |         |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | B1ft<br>B1     |                                                                                | df – ft their number of classes - 1<br>awfw 10.6 ~ 10.7              |
|         |                                                                                                                                                                           |        |         |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                                                                                | p-value 0.0663~ 0.0666                                               |
|         | 11.811 > 10.645 ; reject H <sub>0</sub> ; data do not fit an exponential distribution with parameter $\lambda = \frac{2}{15}$<br>Data cannot be modelled adequately by an |        |         |          |                            | o not fit an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | E1dep<br>E1dep | 11                                                                             | ĸ                                                                    |
|         |                                                                                                                                                                           |        |         |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                                                                                | E1 conclusion in context dependent<br>on A1 for ts and B1 for cv.    |
|         |                                                                                                                                                                           |        |         |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                                                                                |                                                                      |
|         |                                                                                                                                                                           |        |         |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                                                                                | E1 : accept either Poisson model is                                  |
|         | exponential distribution and hence the Poisson model is unlikely                                                                                                          |        |         |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | unlikely or data lacks fit to $Exp(2/15)$ dependent on a $\chi^2$ test in (b). |                                                                      |
|         |                                                                                                                                                                           |        |         |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                                                                                | $a \in \mathcal{F}_{\mathcal{L}}$                                    |
|         | The answer in a(i) is not likely to be valid.                                                                                                                             |        |         |          |                            | e valid.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | E1dep          | 2                                                                              | E1 dep on first E1 - invalid                                         |
|         |                                                                                                                                                                           |        | ~ /     |          | <b>.</b> .                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1              |                                                                                | ·                                                                    |
|         |                                                                                                                                                                           |        |         |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | 18                                                                             |                                                                      |