AQA

A-LEVEL STATISTICS

Statistics 5 - SSO5
Mark scheme

June 2014

Version/Stage: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

[^0]| Q | Solution | Marks | Total | Comments |
| :---: | :---: | :---: | :---: | :---: |
| 1 | $s=38.2$ or s ${ }^{2}=1460$ | B1 | | awfw 38.2~38.3 or $1450 \sim 1460$ accept $\sum(x-\bar{x})^{2}=16100$ (3sf) |
| | $\begin{aligned} & H_{0}: \sigma=30 \\ & H_{1}: \sigma \neq 30 \end{aligned}$ | B1 | | Both hypotheses o.e.; must use σ |
| | $\frac{(n-1) S^{2}}{\sigma^{2}}=\frac{11 \times 38.2^{2}}{3^{2}}$ | M1 | | $\text { M1 "their" } \frac{11 s^{2}}{\sigma^{2}} .$ |
| | $=17.85$ | A1 | | awfw 17.8 ~ 17.9 |
| | | B1 | | B1 for 11 df ; p value $0.170 \sim 0.175$ |
| | cv's $\chi_{11}^{2}=3.816,21.92$ | B1,B1 | | B1 for each χ^{2} value; awfw 3.81~3.82 and 21.9~22.0 |
| | $3.816<17.8<21.92$ accept H_{0}
 Insufficient evidence at the 5% level to doubt that the standard deviation of volumes of milk delivered by the machine is 30 ml . | A1 | | All correct and statement in context. Comparison with both ends. |
| | | | 8 | |

Q	Solution	Marks	Total	Comments
5(a)	$\begin{array}{ll} s_{\mathrm{k}}=0.680 & s_{\mathrm{a}}=0.646 \\ \left(s_{\mathrm{k}}^{2}=0.462\right. & \left.s_{\mathrm{a}}^{2}=0.418\right) \end{array}$	B1		$\begin{aligned} & \text { awfw } 0.679 \sim 0.680,0.646 \sim 0.647 \\ & (0.462 \sim 0.463,0.417 \sim 0.418) \end{aligned}$
	$\begin{aligned} & \mathrm{H}_{0}: \sigma_{\mathrm{k}}^{2}=\sigma_{\mathrm{a}}^{2} \\ & \mathrm{H}_{1}: \sigma_{\mathrm{k}}^{2} \neq \sigma_{\mathrm{a}}^{2} \end{aligned}$	B1		Both hypotheses. Use of other suffices must be clearly defined.
	t.s. $F=\frac{0.680^{2}}{0.646^{2}}=1.107$	M1		M1 : using their s^{2}
	df 6,8 c.v. $=4.652$	B1,B1		$p \text {-value } 0.868 \sim 0.869$
	Accept H_{0}, there is no significant evidence that the samples come from populations with different variances.	E1dep		E1: conclusion in context, dependent on A1 for t.s. and B1 for cv
(b)	$\bar{x}_{k}=9.77 \quad \bar{x}_{a}=9.14$	B1	7	Both means awfw (9.77~ 9.78, 9.14~ 9.15)
	$\begin{aligned} & H_{0}: \mu_{\mathrm{k}}=\mu_{\mathrm{a}} \\ & \mathrm{H}_{\mathrm{l}}: \mu_{\mathrm{k}}>\mu_{\mathrm{a}} \end{aligned}$	B1		Both hypotheses. Use of other suffices must be clearly defined
	Pooled variance: $s_{p}^{2}=\frac{6 \times 0.680^{2}+8 \times 0.646^{2}}{7+9-2}=0.437$	M1A1		$\begin{aligned} & \text { awfw } 0.436 \sim 0.437\left(s_{p}=0.660 \sim\right. \\ & 0.661) \end{aligned}$
		M1		M1 (numerator)(accept 9.14-9.77)
	$t=\frac{9.77-9.14}{\sqrt{0.437\left(\frac{1}{7}+\frac{1}{9}\right)}}=1.88$	m1		m 1 (denominator -ft on their $S_{p}{ }^{2}$ but must have $1 / 7$ and $1 / 9$.)
		A1		A1 :awfw 1.88 ~ 1.89, ignore sign ignore sign
	cv $\mathrm{t}_{14}=1.345$	B1		p-value : 0.0403~0.0404
	$1.88>1.345$ reject H_{0}	A1dep		A1dep; comparison and conclusion; dependent on A1 for t.s. and B1 for cv. (signs must be consistent with the alternative hypothesis.)
	evidence at $\mathbf{1 0 \%}$ level that Kanwar's car travels, on average, more miles to the litre than Ashok's car	E1dep		E1 conclusion in context; dependent on previous A1
			10	
(c)	Not reasonable: miles travelled per litre of petrol does not depend on distance travelled.	E1		
			1	
			18	

[^0]: Copyright © 20yy AQA and its licensors. All rights reserved.
 AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

