

A-LEVEL Statistics

Statistics 4 – SS04 Mark scheme

6380 June 2015

Version/Stage: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Copyright © 2015 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Μ	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and
	accuracy
E	mark is for explanation
or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
– <i>x</i> EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
С	candidate
sf	significant figure(s)
dp	decimal place(s)

Key to mark scheme abbreviations

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q 1	Solution	Marks	Total	Comments
1	$H_0: p = 0.15$ $H_1: p > 0.15$	B1		Both. oe in numbers (µ=18) or in words
	$\frac{Using Numbers}{X \sim B(120, 0.15)} \approx N(18, 15.3)$	B1 B1		B1 for mean 18 cao B1 for correct expression for variance or 15.3 cao
	$TS = \frac{29 - 18}{\sqrt{15.3}} = 2.81$	M1 A1		or SD awrt 3.91 Their mean/SD condone small slip Ignore sign but needs square root. 2.75 ~ 2.9
	or $TS = \frac{28.5 - 18}{\sqrt{15.3}} = 2.68$	(M1) (A1)		2.6 ~ 2.75 Note: wrong CC (29.5) gives 2.94 for M1A0
	or <u>Using Proportions</u> Use of N(0.15, 0.00106)	(B1) (B1)		B1 for mean 0.15 cao B1 for correct expression for variance or (0.0010 ~ 0.0011) or SD (0.031~0.034)
	$\hat{p} = \frac{29}{120} = 0.242$ $TS = \frac{0.242 - 0.15}{\sqrt{\frac{0.15 \times 0.85}{120}}} = 2.81$	(M1) (A1)		Their mean/SD condone small slip (eg use of \hat{p} in denominator $\rightarrow z = 2.34$). Ignore sign but needs square root. 2.75 ~ 2.9
	Critical value is 2.3263	B1		2.32 ~ 2.33 or $p=0.0025$ (0.0015 ~ 0.003) from TS=2.81 (using 29) or $p=0.0037$ (0.0029 ~ 0.005) from TS=2.68 (using 28.5) or $p=0.0016$ (0.001 ~ 0.002) from TS=2.94 (using 29.5) or if no CV seen and p not one of these. B1 for their normal or binomial p -value (< 0.5) compared to 0.01.
	Reject H_0 at the 1% level	A1dep		Requires correct TS or 2.94 and correct critical z value or their correct <i>p</i> compared with .01.
	There is evidence that the percentage (/ proportion) of customers (/ those aged 25 years) or under is higher for the new savings account.	E1dep		Must correctly reject H ₀ In context. Dependent on all previous marks, except first B1
			8	
	Total		8	

Q	Solution	Marks	Total	Comments
-	Solution	IVIALKS	Total	Comments
2 (a)	$B(240, 0.0025) \rightarrow Po(0.6)$	M1 A1		Attempt at Poisson approximation Mean $n \times 0.0025 = 0.6$
	P(3 or more) = $1 - 0.9769$	m1		Attempt to find P (3 or more) from either 1 - 0.9769 or 1 - 0.9966 (= 0.003 ~ 0.004)
	= 0.0231	A1		0.023 ~0.024
				Note Exact binomial (0.0229) or normal approx gets 0/4
			4	
(b)	Using $45 \pm z\sqrt{45}$ z=1.96 used in a CI 45 ± 13.15 or (31.85, 58.15)	M1 B1 A1		Any z cao (13.1~13.2) (31.8~31.9, 58.1~58.2)
			3	
		Total	7	

Q	Solution	Marks	Total	Comments
	$H_0: \lambda = 2.8$	11201210	20002	
(i)	$H_1: \lambda > 2.8$	B1		For both. Allow µ or "rate".
	Find $P(X \ge 4)$ from Poisson tables	M1		Attempt to calculate $P(X \ge 4)$ from
				Po (2.8) . Besides $1 - 0.6919$, allow for
				P(X > 4) = 1 - 0.8477 (= 0.1523)
				or $P(X = 4) = 0.8477 - 0.6919 (=0.1558)$
				or just 0.8477 or 0.6919
	= 1 - 0.6919 = 0.308(1)	A1dep		$1 - 0.6919$ or $0.308 \sim 0.309$
	This is > 0.10 so do not reject H ₀ .	M1dep		or $0.691 \sim 0.692$ <i>if</i> comparing with 0.90 Acc H ₀ + correct Poiss prob with 0.10 oe
	Claim not supported . OR There is no evidence	E1dep		Correct P-value and 0.10, including
	that the rate of shark attacks has increased .	1		conclusion in context.
				Dependent on M1A1M1.
(D1	5	
(ii)	$\overline{x} = 38 \qquad s = 15.556$	B1		For 38 cao and $s_{n-1} = 15.5 \sim 15.6$ or $s_n = 13.472 (13.4 \sim 13.5)$ (ignore labels)
	$H_0: \mu = 52$			$S_n = 15.472$ (13.4 × 15.5) (Ignore facets)
	$H_0: \mu < 52$ $H_1: \mu < 52$	B1		Both (or in words)
	$(t=)\frac{38-52}{15.556/\sqrt{4}}$	M1		M1 for use of $\frac{s_{n-1} \text{ or } s_n}{\sqrt{4} \text{ or } \sqrt{3}}$ in test
	15.556/ \sqrt{4}			V + 07 V 5
	20.50	1		statistic formula
	OR $(t=)\frac{38-52}{13.472/\sqrt{3}}$	m1		Correct formula, ignore sign. Allow z=.
	13.472/√3			
	= -1.80	A1		-1.81 ~ -1.79. Ignore sign
	Critical value $t_3 = -1.638$	B1 B1		3 df in <i>t</i> -test used (implied by 1.638 or 2.353)
		DI		-1.63 ~ -1.64 (beware use of 5% normal CV). Sign consistent in use with TS
				or $p = 0.0848 (0.084 \sim 0.086)$
	Reject H_0 at 10% level.			
	There is avidence to gunnout aloin that should	E1dep		Correct TS & critical t (signs consistent)
	There is evidence to support claim that shark attacks on average are closer to shore.			OR correct <i>p</i> -value and 0.10. Concl in context. Dependent on all previous marks
				except B1 for hyps
	Note 1 z test (eg using $p = 0.036$) gets max B1B1M1M			5/8
	Note 2 Equivalent solutions using one -sided confidenc OR $38 < 39.3$ so reject H ₀ . Use of two -sided intervals 56			
			<u>8</u>	accept 110 will lobe at least the linar DTD1.
(b)	Both statements agree with the conclusions in	B1		No ft (i.e. needs (i) not rej H_0 (ii) rej H_0)
	(a)(i) AND (a)(ii).			
	However failure to raiset U does NOT mean that	B1		B1 for recognising that statements are
	However, failure to reject H_0 does NOT mean that H_0 is "proved". The first statement is too strong.	DI		B1 for recognising that statements are too positive/definite.
	The second statement is also too positive.			Allow correct reference to a relevant type
				of error that may have been made (type II
				then type I) or other reasonable explanation of why conclusion(s) should
				be treated with caution. NIS.
			2	
		Total	15	

Q	Solution	Marks	Total	Comments		
4 (a)	E(T) = 78 + 126 = 204	B1		Cao		
	$V(T) = 5.8^2 + 7.4^2$	M1				
	= 88.4	A1		Awrt 88.4 isw. Ignore units here.		
				SC If M0A0, SD = 9.4(0) B1		
			3			
(b)	Weekly profit (X) = $0.22W_A + 0.15W_B$	M1		Attempt to use this linear comb. (PI)		
	$E(X) = 0.22 \times 78 + 0.15 \times 126 = 36.06$	A1		Correct expression		
		1		or 17.16+18.90 seen . AG		
	$V(X) = 0.22^2 \times 5.8^2 + 0.15^2 \times 7.4^2$	m1		Method for variance. May be implied by $1.276^2 + 1.110^2$.		
	(= 1.628 + 1.232 = 2.860)			Condone missing squares on 5.8 and 7.4.		
	SD(X) = cart (2.860) = 1.60	A1		Completely correct expression for SD		
	SD(X) = sqrt(2.860) = 1.69			seen. AG		
			4			
(c) (i)	E(L) = 17.16 - 18.9 (= -1.74)	B1		Ignore sign		
	SD(L) = SD(X) = 1.69	BF1		Same as in (b) or may start again.		
	$P(L > 0) = P\left(Z > \frac{1.74}{1.69}\right) = P(Z > 1.0296)$	M1		Standardising, clearly using mean &SD		
	$F(L \ge 0) = F(L \ge \frac{1.69}{1.69}) = F(L \ge 1.0290)$					
	= 1 - 0.8484	m1		Using tables. Allow for 0.8484.		
	= 1 - 0.8484					
	= 0.1516	A1		0.151 ~ 0.152		
				(z = 1.03 in tables gives 0.1515)		
	Note $E(L) = 1.74$, $P(L > 0) = 0.1516$ is equivalent	10 fee	1/5			
	E(L) = 1.74, P(L < 0) = 0.8484 gets B1BF1M1m1	AU IOF IIIa	5			
(ii)			5			
(11)	It is the probability that, in a particular week,	E1		oe		
	the pet shop will make a greater profit from	21				
	Appydog sales than from Boneybites sales.					
	rppydog sales man nom Done yones sales.		1			
(d)	$H_0: \mu = 78$	B1	1	Both		
(u)	$H_0. \mu = 78$ $H_1: \mu > 78$	DI		bour		
	82 - 78	M1		Correct expression. Ignore sign and label		
	$z = \frac{82 - 78}{5.8/\sqrt{8}} = 1.95(06)$	A1		1.94 ~ 1.96		
	5.0/ 0					
	CV = 2.3263	B1		$2.32 \sim 2.33. (\pm \text{ sign consistent with TS}).$		
	or $p (= 1 - 0.9744) = 0.0256$			or 0.025 ~ 0.026		
	Do not reject H_0 at the 1% level.	E1dep		Correct conclusion in context, comparing		
	No evidence to suggest sales increased OR			correct TS with CV or correct p-value		
	campaign successful. (oe)			with 0.01.		
				Dependent on M1A1B1.		
	Fo					
	Note Using CI: (B1) $82 - k \times \frac{5.8}{\sqrt{8}}$ M1 2.32 ~2.33 B1 LCL = 77.2 A1 77.2 < 78 so accept H ₀ + conclusion E1					
	Using DI: (B1) 78 + $k \times \frac{5.8}{\sqrt{8}}$ M1 2.32 ~2.33 B1 UDL = 82.8 A1 82.8 > 82 so accept H ₀ + conclusion E1					
			5	- ·		
		Total	18			
		rotai	10			

Q	Solution	Marks	Total	Comments
5 (a) (i)	0.10 or 10%	B1		oe
			1	
(ii)	P(≥ 1 exclude μ) = 1 – P(None exclude μ) = 1 – (0.9) ⁵ = 1 – 0.59049 = 0.40951	M1 M1 A1		Any p^5 with 0 <p<1 seen<br="">For 1 – (0.9)⁵ or 1 – (0.1)⁵ (= 0.999999) 0.4 ~ 0.41</p<1>
	Alternative Using B(5, 0.1) table $P(\ge 1) = 1 - 0.5905$ or $P(> 1) = 1 - 0.9185$ (= 0.0815)	(M1) (M1)		Seen or implied Either expression seen
	= 0.4095	(A1)		0.4 ~ 0.41
			3	
(b) (i)	$10.280 \pm t_{5;0.05} \frac{0.021}{\sqrt{6}}$	M1		Correct form including $\sqrt{6}$ and use of t distribution or $z = 1.64 \sim 1.65$ Condone $10.325 \pm ()$
	with $t = 2.015$	B1		2.01 ~ 2.02
	$= 10.280 \pm 0.017(275)$	M1		Completely correct expression evaluated. $10.28cao \pm (0.017 \sim 0.0175)$ may be implied by correct limits not necessarily to 3dp.
	giving limits (10.263,10.297)	A1		Both limits to 3dp. No isw here. Condone truncation to 10.262.
			4	
(ii)	10.325 is outside (or above) the interval	B1		Needs their CI basically correct. Condone small slip but CI must be below 10.325. Need only refer to upper limit. Correct conclusion and reason.
	So new programme seems effective (or mean time decreased)	B1dep		Dependent on previous B1 Note. These last 2 marks are available after using normal in part (i) which gives (10.266, 10.294)
			2	
		Total	<u> </u>	
L	<u> </u>	Total	10	

Q	Solution	Marks	Total	Comments
6 (a) (i)	No. of cherries in the cake (C) \sim Po(15)	B1		Poisson 15.
	P(C>12) = 1- 0.2676	M1		Allow for B(450, $\frac{1}{30}$) (\rightarrow 0.737) Attempt at P(C>12) from Po(15). Allow
	= 0.7324	A1		also $P(C \ge 12) = 1 - 0.1848 (= 0.8152)$ 0.732 ~ 0.733
			3	
(ii)	No. of currants in the cake $(U) \sim Po(225)$	B1		Poisson 225
	Approximated by N(225,225) $P(U \le 250) = P(U \le 250.5)$	M1		For Normal approximation to Poisson.
	$= P\left(Z < \frac{250.5 - 225}{\sqrt{225}}\right)$	m1		For standardisation. Condone missing/wrong CC. Ignore sign.
	= P(< 1.7)	A1		A1 for completely correct expression. May be implied by $z = 1.7$.
	= 0.9554(3)	A1		0.955 ~ 0.956
				Special Case Exact Poisson→0.9535 (0.953 ~ 0.954) B2
	Note Missing/wrong CC gives answers 0.952 and ().949 resp	bectively	for B1M1m1 max 3/5
		•	5	
(iii)	(1-(ii)) × (1-(ii))	M1		For p^2 where $p=1$ -answer in (ii) or ($p = 1$ -answer from starting again with sultanas)
	$= 0.0446^2 = 0.00199$	AF1		and $00.0019 ~ 0.0021ft their p$
			2	<u> </u>
(b) (i)	n = 75	B1		Cao. Award in (b)(ii) if n not given here
	No. of cherries in cake of 45 cm^3 (S) ~ Po(1.5)	M1		M1 for Po(1.5)
	Then $p = P(S = 0) = e^{-1.5}$	m1		Attempt at $P(S=0)$ from $Po(1.5)$
	= 0.223(1)	A1		0.223 correctly derived. Requires $e^{-1.5}$ seen (oe).
			4	
(ii)	$75 \times 0.223 = 16.73$	B1		75 × 0.223 or 16.7 ~ 16.8 isw
			1	
	If not stirred enough, cherries would tend to appear in 'clumps'. So more cupcakes would be expected to be cherry- free	E1		oe " <i>Not distributed at random</i> " is not enough. Needs idea of "clumping".
	Hence would expect to increase E(G).	E1		Disallow if with <i>incorrect</i> or <i>nonsense</i> justification. Allow if with <i>insufficient</i> or <i>no</i> justification Allow other convincing arguments.
			2	
			2	