A-LEVEL Mathematics

Statistics 1B - MS1B

Mark scheme

6360
June 2014

Version/Stage: Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
Vor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
C	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1	No MR or MC in this question			Ignore units throughout this question
(i)	$\begin{aligned} & \text { Mode }=\underline{71} \\ & \text { Range }=\underline{9} \end{aligned}$	B1 B1		CAO; ignore any reference to 8 CAO
Note	1 If answers are not identified, then assume that order of values is mode, range			
(ii)	$\begin{array}{r} \text { Median }=\underline{70} \\ \mathrm{IQR}=\underline{3} \\ \mathrm{UQ}=\underline{72} \quad \underline{\mathrm{TQ}}=\underline{69} \end{array}$	B1 B2 (B1)	3	CAO CAO; providing not from incorrect working eg see Note 1 Both values CAO; ignore labels
Notes	1 Ordering of weeks ($1,1,2,2,2,3,4,5,7,8) \Rightarrow$ median $=2.5 \Rightarrow \mathrm{~B} 0 \mathrm{~B} 0$ even if $\mathrm{IQR}=3(5-2)$ 2 If answers are not identified, then assume that order of values is median, IQR			
(iii)	$\begin{aligned} \text { Mean } & =\underline{70.4} \\ \text { Mean } & =\underline{70.1 \text { to } 70.7} \\ S D & =\underline{2.03 \text { or } 2.06} \\ S D & =\underline{2 \text { to } 2.1} \end{aligned}$	B2 (B1) B2 (B1)	4	CAO AWFW; but exclude 70.5 unless with a correct method (see Note 2) Either AWRT (2.0312 or 2.0608) AWFW
Notes	$1 \sum f x=2464$ and $\sum f x^{2}=173610$ 2 Using only x-values gives Mean $=70.5$ and $\mathrm{SD}=3.16$ or $3.32 \Rightarrow \mathrm{BO}$ B0 3 Using only f-values gives Mean $=3.18$ and $\mathrm{SD}=2.44$ or $2.56 \Rightarrow$ B0 B0 4 If , and only if, B0 B0, then award M1 for seen attempt at $\sum \mathrm{fx} \div 35$ or for $2464 \div 35$			
(b)	Henrietta keeps $(x-60)$ so: $\begin{array}{r} \text { Mean }=\underline{10.4} \\ S D=\underline{2.03 \text { or } 2.06} \end{array}$	BF1 BF1	2	FT on any mean > 60 from (a)(iii) but must subtract 60 and state numerical value >0 FT on any SD >0 from (a)(iii) but must state unchanged numerical value >0
Notes	```1 Mean is "60 fewer" than previously/in (a)(iii) (OE) \(\Rightarrow \mathrm{BF} 0\) 2 SD is "exactly same" as previously/in (a)(iii) (OE) \(\Rightarrow \mathrm{BFO}\) 3 If mean and SD calculated using \((x-60), \sum f(x-60)=364\) and \(\sum f(x-60)^{2}=3930\),```then, to score marks, the answers must be 10.4 (CAO) and 2.03 (AWRT) or 2.06 (AWRT)			
		Total	11	

Q	Solution	Marks	Total	Comments
2	No MR or MC in this question			Accept \%age equivalents in (a)(i) to (iii)
(a) (i)	Length, $X \sim \mathrm{~N}\left(1.86,0.04^{2}\right)$ $\begin{aligned} & \mathrm{P}(X<1.90)=\mathrm{P}\left(Z<\frac{1.90-1.86}{0.04}\right) \\ &=\mathrm{P}(Z<1)=\mathbf{0 . 8 4 1} \end{aligned}$	M1 A1	(2)	Standardising 1.90 with 1.86 and 0.04 but allow ($1.86-1.90$) AWRT (0.84134)
(ii)	$\mathrm{P}(X>1.80)=\mathrm{P}(Z>-1.5)=\mathrm{P}(Z<1.5)$ $=\underline{0.933}$	M1 A1	(2)	Correct area change; neither 1.5 or correct standardising are required Can be implied by final answer $>\mathbf{0 . 5}$ AWRT (0.93319)
(iii)	$\begin{aligned} & \mathrm{P}(1.80<X<1.90)=\mathrm{P}(Z<1)-\mathrm{P}(Z<-1.5)= \\ & \text { or } \quad \begin{aligned} \text { (i) }-[1-(i i)] \text { or (ii) }-[1-(i)] \\ \text { (i) }+ \text { (ii) }-1 \end{aligned} \\ & =\underline{0.774 \text { to } 0.775} \end{aligned}$	M1 A1	(2)	OE; any correct difference in areas that results in answer >0 Can be implied by correct answer but see Notes AWFW (0.77453)
Notes	1 If answer to (ii) is 0.06681 , then use of (i) - (ii) $=0.84134-0.06681=0.774$ to $0.775 \Rightarrow$ M0 A0 2 If answer to (ii) is 0.06681 , but answer here starts afresh with $\mathrm{P}(1.80<X<1.90)$, then M 1 A 1 is available			
(iv)	$\mathrm{P}(X \neq 1.86)=\underline{1}$ or one or unity or 100%	B1	(1)	CAO; accept nothing else but ignore zeros after decimal place (eg 1.00) Ignore additional words providing that they are not contradictory (eg certain so $=1$)
Note	$1 \mathrm{P}(X \neq 1.86)=\mathrm{P}(Z \neq 0) \Rightarrow \mathrm{B} 0$ unless followed by 1 OE			
			7	
(b)	$\begin{array}{r} 0.98 \Rightarrow z=\underline{2.05} \text { to } 2.06 \\ \left(\frac{1.80-1.86}{\sigma}\right)</=/>\left(\begin{array}{c} -2.05 \text { to }-2.06 \\ \text { or } \\ -2.32 \text { to }-2.33 \end{array}\right) \\ \sigma</=/>\underline{\mathbf{0 . 0 2 9} \text { to } \mathbf{0 . 0 3}} \end{array}$	B1 M1 A1	3	AWFW; seen anywhere, ignore sign (2.0537) Standardising 1.80 with 1.86 and σ or s but allow (1.86-1.80); and equating to a z-value in either range (ignore sign) AWFW (0.02922) If working is shown, then there must be consistent signs throughout so, for example, $(1.80-1.86) / \sigma=+2.0537$ $\Rightarrow \mathrm{B} 1 \mathrm{M} 1 \mathrm{~A} 0$
Note	1 Allow use of 1.92 instead of 1.80 so (1.92-1.86)/ $\sigma=+2.0537 \Rightarrow$ B1 M1 (A1)			
		Total	10	

Q	Solution	Marks	Total	Comments
3	No MR or MC in this question except as indicated in the following Notes			
Notes for part (a)	1 If correct fraction, percentage or ratio is followed by incorrect decimal, then apply ISW but apply penalties as in Notes 2 to 5 2 At least one decimal answer given to more than 3 dp (including 0.0320) or at least one recurring decimal answer (eg $0.29 \dot{3}$ or $0.2 \dot{9} \dot{0}$) are penalised by $\mathbf{1}$ mark 3 At least one fractional answer (eg 22/75) is penalised by $\mathbf{1}$ mark 4 At least one percentage answer (eg 29.3) is penalised by $\mathbf{1}$ mark 5 At least one ratio answer (eg 22:75) is penalised by 2 marks Mark answers as below and then apply MR-1 or MR-2 as appropriate (if available) at end of question before totalling marks			
(a)(i)	$\mathrm{P}(\mathrm{FH})=\underline{220 / 750}=22 / 75=0.293$	B1	(1)	CAO/AWRT (0.29333)
(ii)	$\begin{aligned} & \mathrm{P}(\mathrm{AH} \cap \mathrm{BE})= \\ & \underline{24 / 750=8 / 250=4 / 125=\mathbf{0 . 0 3 2}} \end{aligned}$	B1	(1)	CAO
(iii)	$\begin{aligned} \mathrm{P}(\mathrm{AH} \cup \mathrm{BE} \text { but not both })= & \frac{110+215-2 \times 24}{750} \\ & =\underline{\mathbf{2 7 7} / 750=\mathbf{0 . 3 6 9}} \end{aligned}$	M1 A1	(2)	OE Can be implied by correct answer CAO/AWRT (0.36933)
SC	Award B1 for 301/750 or 0.401(33)			
(iv)	$\begin{aligned} & \mathrm{P}(\mathrm{GE} \mid \mathrm{FH})=\frac{64}{750} / \frac{220}{750}= \\ & \underline{\mathbf{6 4 / 2 2 0}}=\mathbf{3 2 / 1 1 0}=\mathbf{1 6} / 55=\mathbf{0 . 2 9 1} \end{aligned}$	M1 A1	(2)	OE Can be implied by correct answer
(v)	$\mathrm{P}(\mathrm{FH} \mid \mathrm{GE})=\frac{64}{750} / \frac{195}{750}=$ $\underline{64 / 195}=0.328$	M1 A1	(2)	OE Can be implied by correct answer
SC	If, and only if, answers to (iv) \& (v) are correct but reversed, then award M1 A0			M1 A0
			8	
(b)	$\begin{aligned} & \mathrm{P}((\mathrm{DH} \cap \mathrm{BE}) \cap(\mathrm{DH} \cap \mathrm{BE}) \cap(\mathrm{MH} \cap \mathrm{GE}))= \\ & \\ & \begin{array}{r} \frac{92}{750} \times \frac{91}{749} \times \frac{55}{748} \\ \text { or } \quad \\ \begin{array}{r} \binom{92}{2}\binom{55}{1} \div\binom{ 750}{3} \end{array} \\ \\ \end{array} \quad \underline{\mathbf{0 . 0 0 3 2}} \mathbf{~ M u l t i p l i e d ~ b y ~} 3 \end{aligned}$	M1 M1 m1 (M1 M1) (M1) A1	4	Correct 3 values multiplied in numerator Correct 3 values multiplied in denominator $0.123 \times 0.121 \times 0.074$ (all AWRT) \Rightarrow M1 M1 (OE products) Dependent on at least one M1 scored Numerator Denominator AWFW (0.00328752)
Notes	```1 Incorrect answer with no working \(\Rightarrow 0\) marks The \(\mathbf{3}\) correct fractions or decimals identified but not multiplied (eg added) \(\Rightarrow \mathrm{M} 1 \mathrm{M} 0 \mathrm{~m} 0 \mathrm{~A} 0\) The 3 correct fractions or decimals identified along with 0.0011 (AWRT) \(\Rightarrow \mathrm{M} 1 \mathrm{M} 1 \mathrm{~m} 0 \mathrm{~A} 0\) Do not penalise a correct answer given to more than 3sf Answer given as \(3.28 \times 10^{-3}\) to \(3.29 \times 10^{-3} \Rightarrow \mathrm{M} 1 \mathrm{M} 1 \mathrm{~m} 1 \mathrm{~A} 1\)```			
		Total	12	

Q	Solution	Marks	Total	Comments
4	No MR or MC in this question			
(a)	$\begin{aligned} r_{u v} & =0.915 \\ & =0.9 \text { to } 0.92 \\ & =0.8 \text { to } 0.99 \end{aligned}$	$\begin{aligned} & \text { B3 } \\ & \text { (B2) } \\ & \text { (B1) } \end{aligned}$		AWRT AWFW AWFW
	Attempt at $\sum u \sum u^{2} \sum v \sum v^{2} \& \sum u v$ or Attempt at $S_{u u} S_{v v} \& S_{u v}$ Attempt at substitution into correct corresponding formula for $r_{u v}$ $r_{u v}=\underline{0.915}$	(M1) (m1) (A1)	3	$81.58 \quad 808.2288 \quad 70.11 \quad 632.3553$ \& 701.6158 (all 5 attempted) 142.69916140 .81409 \& 129.65842 (all 3 attempted) AWRT
(ii)	$r_{x y}=\underline{0.915}$	BF1		F on (i) providing $\mathbf{- 1}<\boldsymbol{r}_{u v}<+\mathbf{1}$ Value quoted must be $0.915(\mathrm{AWRT})$ or identical to answer in (i)
Notes	$\begin{aligned} & 1 \text { Award on value only; ignore any explanation or working } \\ & 3 \text { Calculating } r_{x y} \text { using values of } x \& y \Rightarrow \text { B1 only if } r_{x y}=0.915 \text { (AWRT) }\end{aligned} \quad 2 r_{x y}=r_{u v}$ with no value stated $\Rightarrow \mathrm{B} 0$			
Notes	r is not affected by linear scaling or Scaling/coding/transformation/change/ conversion to u and v is linear	Bdep1		OE; accept "Formula" or "It" for r but reference to "linear" is necessary Dependent on BF1 OE; but reference to "linear" is necessary
			2	
(b)	(Very) strong positive (linear) correlation	Bdep1		Dependent on $0.8 \leq\left(\boldsymbol{r}_{x y}\right.$ or $\left.\boldsymbol{r}_{u v}\right) \leq \mathbf{0 . 9 9}$ OE; must qualify strength and state positive
Notes	1 Only accept phrase stated; ignore additional comments unless contradictory 2 Use of: "quite/fairly/extremely/relatively strong or high or big or good or moderate or medium or average" \Rightarrow Bdep0 3 Accept "relationship/association/link" but not "trend" instead of "correlation"			
Notes	between (average) qualifying speed and (average) race speed	B1	2	Context; providing -1 $<\left(\boldsymbol{r}_{x y}\right.$ or $\left.\boldsymbol{r}_{u v}\right)<\mathbf{1}$
	1 Accept "qualifying mph" and "race mph" but not "mph" without identification 2 Accept "fastest/qualifying lap" and "three/ race laps"			
		Total	7	

Q	Solution	Marks	Total	Comments	
5	No MR or MC in this question		3	Accept percentage equivalents in (a)	
(i)	$\begin{array}{r} p(0)=\underline{\mathbf{0 . 1 8}} \\ \mathrm{P}(\mathrm{H}=3)=\binom{30}{3}(p)^{3}(1-p)^{27} \\ =\underline{\mathbf{0 . 1 1 1} \text { to } \mathbf{0 . 1 1 2}} \end{array}$	B1 M1 A1		CAO; can working or Correct exp $p=\mathbf{0 . 1 8}, 0$ Can be impli Ignore extra AWFW	implied from orrect answer sion using , 0.25 or 0.10 by correct answer rms
(ii)	$\begin{array}{r} p(\geq 3)=\underline{\mathbf{0 . 1}} \\ \mathrm{P}(\mathrm{H} \leq 5)=\underline{\mathbf{0 . 9 2 6} \text { to } \mathbf{0 . 9 2 7}} \end{array}$	B1 B1	2	CAO; can working or AWFW	implied from orrect answer (0.9268)
(iii)	$\begin{array}{r} p(\geq 2)=\underline{\mathbf{0 . 3 5}} \\ P(H>10)=\underline{\mathbf{1 - (0 . 5 0 7 8} \text { or } \mathbf{0 . 3 5 7 5})} \\ =\underline{\mathbf{0 . 4 9 2}} \end{array}$	B1 M1 A1	3	CAO; can b 0.3575 (acc or correct Requires "1 Accept 3 dp Can be impl but not by AWRT	implied from 0.5078 or 3dp rounding) swer - either probability" rounding by (0.492) 642 to 0.643)
SC	For calculation of individual terms: award B1 B2 for 0.492 (AWRT); award B1 for 0.642 to 0.643 (AWFW)				
(iv)	$\begin{gathered} p(=2)=0.25 \\ \mathrm{P}(5<\mathrm{H}<10)=\mathbf{0 . 8 0 3 4} \text { or } \mathbf{0 . 8 9 4 3} \\ \text { MINUS } \quad \mathbf{0 . 2 0 2 6} \text { or } \mathbf{0 . 0 9 7 9} \\ =\underline{0.6} \text { to } \mathbf{0 . 6 0 1} \end{gathered}$	M1 M1 A1	3	Accept 3 dp Can be implied Accept 3 dp Can be implied AWFW	rounding by correct answer rounding d by correct answer (0.6008)
	1 First M1 is for ($+\boldsymbol{p}_{1}$) in calculation 2 Second M1 is for ($-\boldsymbol{p}_{2}$) in calculation $\mathbf{3}\left(1-p_{2}\right)-\left(1-p_{1}\right) \Rightarrow$ M1 M1 (A1) $4 \mathrm{~B}(30,0.25)$ probabilities shown for at least 3 values within $4 \leq X \leq 10 \Rightarrow$ M2 May be implied by a correct answer$\text { Ans }=\underline{0.6} \text { to } 0.601 \Rightarrow \mathrm{~A} 1$				
(b)	Mean $(\mu$ or $\bar{x})=\underline{\mathbf{1 0 8}}$ Variance $\left(\sigma^{2}\right.$ or $\left.s^{2}\right)=\underline{\mathbf{3 0 . 2}}$ to $\mathbf{3 0 . 3}$	B1 B1	2	CAO; AWFW	$\mathrm{B}(150,0.72)$ (30.24)
Notes	1 If answers are not identified, then assume that order of values is mean, variance 2 If 30.2 to 30.3 labelled as $\mathrm{SD}(\sigma$ or $s) \Rightarrow \mathrm{B} 0$				
		Total	13		

Q	Solution	Marks	Total	Comments
6	No MR or MC in this question	Accept height but not length instead of depth throughout question		
(a)(i)	$a=\underline{15}$	B1	1	CAO; eg $14.9 \Rightarrow 15 \Rightarrow$ B0
(ii)	$\begin{array}{r} b \text { (gradient/slope) }=\underline{\underline{0.029}} \\ b \text { (gradient/slope) }=\underline{-0.025} \mathbf{\text { to } - \mathbf { 0 . 0 3 5 }} \\ a(\text { intercept })=\underline{\mathbf{1 4 . 9}} \\ a(\text { intercept })=\underline{\mathbf{1 4} \text { to } 16} \end{array}$	$\begin{gathered} \text { B2 } \\ \text { (B1) } \\ \\ \text { B2 } \\ \text { (B1) } \end{gathered}$		AWRT AWFW (-0.02903) AWRT (14.90968) AWFW
	Attempt at $\sum x \sum x^{2} \sum y \& \sum x y$ or Attempt at $S_{x x} \& S_{x y}$ Attempt at correct formula for b $b=\underline{\mathbf{0 . 0 2 9}}$ (AWRT) $\quad a=\underline{14.9}$ (AWRT)	(M1) (m1) (A1 A1)	4	$1450 \quad 280000$ $107 \quad \& \quad 13490$ (all 4 attempted) $\left(\sum y^{2}=1204.42\right)$ (both attempted)$\quad\left(S_{y y}=59.52\right)$$10.7)$
Notes	1 Treat rounding of correct answers as ISW 2 Written form of equation is not required 3 Award 4 marks for $y=14.9-0.029 x$ or $y=14.9+-0.029 x$ or $14.9-0.029 x$ or $14.9+-0.029 x$ 4 Values of a and b interchanged and equation $y=a x+b$ stated in (a)(ii) \Rightarrow max of 4 marks 5 Values of a and b interchanged with no equation stated or equation $y=a+b x$ stated in (a)(ii) $\Rightarrow 0$ marks 6 Values of a and b are not identified, then -0.025 to $-0.035 \Rightarrow \mathrm{~B} 1$ and 14 to $16 \Rightarrow \mathrm{~B} 1$ 7 Answers in fractions can score maximum of M1 m1 $\mathbf{8}$ Some/all of marks can be scored in (a)(iii) \& (b) \& (c), even if some/all of marks are lost in (a)(ii), but marks lost in (a)(ii) cannot be recouped by subsequent working in (a)(iii) or (b) or (c)(ii)			
(iii)	Seal depth reduces/decreases by 0.03 (AWRT) when pressure increases by 1 -0.03 (AWRT) when pressure increases by 1 or $(y, \mathrm{~cm})$ reduces/decreases as (x, kPa) increases	B1 Bdep1 (Bdep0) (B1)	2	OE; must be in context OE; must be in context (double negative) OE; context not required B0 for reference only to correlation
Note	1 To score any marks, an explanation must indicate change in x affecting y, not change in y affecting x			
(b)	$\begin{aligned} & y_{225}=\mathbf{8 . 3} \text { to } \mathbf{8 . 4} \\ & y_{225}=\mathbf{6 . 1} \text { to } \mathbf{1 0 . 4} \end{aligned}$	$\begin{gathered} \text { B2 } \\ \text { (B1) } \end{gathered}$	2	AWFW but see Note 1 (8.37442) AWFW; even if by $(9.0+7.5) / 2$
Notes	1 If an answer is in the range 8.3 to 8.4 and seen to be from other than the use of $y=14.9-0.029 x$, then award B1 only 2 If, and only if, B0, then award M1 for seen use of $y=a+b \times 225$ or $y=15+b \times 225$			
(c)(i)	Extrapolation/outside (observed) range (of x)	B1	(1)	OE
(ii)	or $\begin{aligned} y_{525} & =\mathbf{- 0 . 3 ~ t o ~}-\mathbf{0 . 4} \\ x_{0} & =\underline{\mathbf{5 1 0} \text { to } 515} \end{aligned}$ Negative seal depth is impossible Seal is off/above/under/below the ground Seal is within the barrier	B1 Bdep1	(2)	AWFW (-0.33226) AWFW (513.59) OE; must be in context Dependent on B1 Negative value is impossible $\Rightarrow \mathrm{B} 0$
			3	
		Total	12	

Q	Solution	Marks	Total	Comments
7	No MR or MC in this question			
(i)		M1 A1	2	Allow 1.82, 2, 3 or 4 for n with a correct numerical answer OE; must be in context Negative value is impossible $\Rightarrow \mathrm{A} 0$
Notes	$\begin{aligned} \mathbf{1} n=1.82 \Rightarrow \underline{\mathbf{0}} ; n=2 \Rightarrow \underline{\mathbf{- 1 2} ;} n=3 \Rightarrow \underline{\mathbf{- 7 7} ; n=4 \Rightarrow \underline{\mathbf{1 4 2}}} \\ \mathbf{2} \text { Attempt at } \mathrm{P}(V<0)=\mathrm{P}\left(\mathrm{Z}<\frac{0-118}{65}\right) \text { or }\left(z= \pm \frac{0-118}{65}\right) \Rightarrow \mathrm{M} 1 \text { (Standardising } 0 \text { using } 118 \text { and 65) } \\ \quad \Rightarrow \mathrm{P}(Z<-1.81 \text { to } 1.82) \Rightarrow \underline{\mathbf{0 . 0 3} \text { to 0.04 (AWFW) AND negative usage/volume is impossible } \Rightarrow \mathrm{A} 1} \\ \mathbf{o r} \Rightarrow 0 \text { is (1.81 to 1.82)SDs from mean AND negative usage/volume is impossible } \Rightarrow \mathrm{A} 1 \end{aligned}$			
(ii)	Sample (size/number/n) is large or 80/sample (size/number/n) is greater than $25 / 30$ so can apply/use Central Limit Theorem (CLT)	B1 Bdep1		OE OE; is sufficient/is enough/implies Dependent on B1
Notes	$\mathbf{1}$ Even if CLT is stated, then reference to parent population is thus normal \Rightarrow Bdep0 2 Value(s) of (population) standard deviation (and mean) is/are known \Rightarrow B0 Bdep0			
(b)(i)		B1 M1 A1 Adep1	4	AWFW Evaluation of only one CL \Rightarrow M0 Ignore notation $\sqrt{\frac{65^{2} \times 80}{79}}=65.4101$ Fully correct expression CAO/AWRT (16.90574) Dependent on A1 AWRT
Notes	$\mathbf{1}$ A correct answer with no working $\Rightarrow 4$ marks$\mathbf{3}$ An incorrect expression for CI followed by a numerically correct CI $\stackrel{2}{ } \Rightarrow 2$ seen use of t-value (2.37 to 2.38$) \Rightarrow 0$ marks$\Rightarrow((0$ or 1$)+4) / 2 \Rightarrow 2$ marks			
(ii)	Clear correct comparison of 140 with CI eg 140 is outside/above CI or $140>$ UCL Disagree with/doubt/reject claim or $\boldsymbol{\mu}$ unlikely to be/is not 140	BF1 Bdep1	2	F on CI providing it does not contain 140 Must be an interval but quoting values for limits is not required OE; dependent on BF1
Notes	1 Statement must clearly indicate that " 140 is outside/above the CI" or " 140 > UCL" 2 "It/mean/value/OE" is outside/above CI or greater than UCL \Rightarrow BF0 3 Statements of the form "140 is outside/above 98% of the data/values" \Rightarrow BF0 4 Statements such as "Claim unlikely/unreasonable/unsupported/incorrect/false/inaccurate/invalid" \Rightarrow Bdep1 but only if BF1 awarded			
		Total	10	

