

A-LEVEL Mathematics

Statistics 1B – MS1B Mark scheme

6360 June 2014

Version/Stage: Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aga.org.uk

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
Α	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
Е	mark is for explanation
√or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
С	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments	
1	No MR or MC in this question			Ignore units throughout this question	
(a) (i)	Mode = <u>71</u>	B1		CAO; ignore any reference to 8	
	Range = 9	B1	2	CAO	
Note	1 If answers are not identified, then assume that order of value	ies is mode	, range		
(ii)	Median = <u>70</u>	B1		CAO	
	$IQR = \underline{3}$	B2		CAO; providing not from incorrect working eg see Note 1	
	$UQ = \underline{72} \qquad LQ = \underline{69}$	(B1)	3	Both values CAO; ignore labels	
Notes	1 Ordering of weeks (1, 1, 2, 2, 2, 3, 4, 5, 7, 8) \Rightarrow median 2 If answers are not identified, then assume that order of values			if $IQR = 3 (5 - 2)$	
(iii)	$Mean = \frac{70.4}{}$	B2	iii, iQit	CAO	
	Mean = 70.1 to 70.7	(B1)		AWFW; but exclude 70.5 unless with a correct method (see Note 2)	
	SD = 2.03 or 2.06	B2		Either AWRT (2.0312 or 2.0608)	
	SD = 2 to 2.1	(B1)	4	AWFW	
Notes	1 $\sum fx = 2464$ and $\sum fx^2 = 173610$ 2 Using only <i>x</i> -values gives Mean = 70.5 and SD = 3.16 or 3.32 \Rightarrow B0 B0 3 Using only <i>f</i> -values gives Mean = 3.18 and SD = 2.44 or 2.56 \Rightarrow B0 B0 4 If, and only if, B0 B0, then award M1 for seen attempt at $\sum fx \div 35$ or for 2464÷35				
(b)	Henrietta keeps $(x - 60)$ so:				
	Mean = <u>10.4</u>	BF1		FT on any mean > 60 from (a)(iii) but must subtract 60 and state numerical value > 0	
	SD = 2.03 or 2.06	BF1	2	FT on any SD > 0 from (a)(iii) but must state unchanged numerical value > 0	
Notes	1 Mean is "60 fewer" than previously/in (a)(iii) (OE) ⇒ BF0 2 SD is "exactly same" as previously/in (a)(iii) (OE) ⇒ BF0				
	3 If mean and SD calculated using $(x - 60)$, $\sum f(x - 60) = 364$ and $\sum f(x - 60)^2 = 3930$, then, to score marks, the answers must be 10.4 (CAO) and 2.03 (AWRT) or 2.06 (AWRT)				
	then, to score marks, the answers must be 10.4 (CAO) and	Total	RT) or 2.0	00 (AWK1)	
		1 otal	11		

Q	Solution	Marks	Total	Comments		
2	No MR or MC in this question			Accept %age equivalents in (a)(i) to (iii)		
(a)	<u>Length</u> , $X \sim N(1.86, 0.04^2)$					
(i)	$P(X < 1.90) = P\left(Z < \frac{1.90 - 1.86}{0.04}\right)$	M1		Standardising 1.90 with 1.86 and 0.04 but allow (1.86 – 1.90)		
	= P(Z < 1) = 0.841	A1	(2)	AWRT (0.84134)		
(ii)	P(X > 1.80) = P(Z > -1.5) = P(Z < 1.5)	M1		Correct area change; neither 1.5 or correct standardising are required Can be implied by final answer > 0.5		
	$= \underline{0.933}$	A1	(2)	AWRT (0.93319)		
(iii)	P(1.80 < X < 1.90) = P(Z < 1) - P(Z < -1.5) =					
	or $(i) - [1 - (ii)]$ or $(ii) - [1 - (i)]$ or $(i) + (ii) - 1$	M1		OE; any correct difference in areas that results in answer > 0 Can be implied by correct answer but see Notes		
	= 0.774 to 0.775	A1	(2)	AWFW (0.77453)		
Notes	1 If answer to (ii) is 0.06681, then use of (i) – (ii) = 0.841 2 If answer to (ii) is 0.06681, but answer here starts afresh					
(iv)	$P(X \neq 1.86) = 1$ or one or unity or 100%	B1	(1)	CAO; accept nothing else but ignore zeros after decimal place (eg 1.00) Ignore additional words providing that they are not contradictory (eg certain so = 1)		
Note						
			7			
(b)	$0.98 \implies z = 2.05 \text{ to } 2.06$	В1		AWFW; seen anywhere, ignore sign (2.0537)		
	$\left(\frac{1.80 - 1.86}{\sigma}\right) < /=/> \begin{pmatrix} -2.05 & \text{to } -2.06 \\ \text{or} \\ -2.32 & \text{to } -2.33 \end{pmatrix}$	M1		Standardising 1.80 with 1.86 and σ or s but allow (1.86 – 1.80); and equating to a z -value in either range (ignore sign)		
	σ =/ 0.029 to 0.03		3	AWFW (0.02922) If working is shown, then there must be consistent signs throughout so, for example, $(1.80-1.86)/\sigma = +2.0537$ \Rightarrow B1 M1 A0		
Note	1 Allow use of 1.92 instead of 1.80 so $(1.92-1.86)/\sigma = \frac{1}{2}$	+2.0537 =	⇒ B1 M1 (A	A1)		
		Total	10			

Q	Solution	Marks	Total	Comments
3	No MR or MC in this question except as indicated in the			
Notes for part (a)	 If correct fraction, percentage or ratio is followed by incor At least one decimal answer given to more than 3 dp (incore (eg 0.293 or 0.290)) are penalised by 1 mark At least one fractional answer (eg 22/75) is penalised by At least one percentage answer (eg 29.3) is penalised by At least one ratio answer (eg 22:75) is penalised by Mark answers as below and then apply MR-1 or MR-2 as 	luding 0.03 1 mark 1 mark arks	20) or at le	east one recurring decimal answer
(a)(i)	P(FH) = 220/750 = 22/75 = 0.293	B1	(1)	CAO/AWRT (0.29333)
(ii)	$P(AH \cap BE) = \frac{24/750 = 8/250 = 4/125 = 0.032}{}$	B1	(1)	CAO
(iii)	$P(AH \cup BE \text{ but not both}) = \frac{110 + 215 - 2 \times 24}{750}$	M1		OE Can be implied by correct answer
	= 277/750 = 0.369	A1	(2)	CAO/AWRT (0.36933)
SC	Award B1 for 301/750 or 0.401(33)			
(iv)	$P(GE \mid FH) = \frac{64}{750} / \frac{220}{750} =$	M1		OE Can be implied by correct answer
	$\underline{64/220 = 32/110 = 16/55 = 0.291}$	A1	(2)	CAO/AWRT (0.29091)
(v)	$P(FH \mid GE) = \frac{64}{750} / \frac{195}{750} =$	M1		OE Can be implied by correct answer
	64/195 = 0.328	A1	(2)	CAO/AWRT (0.32821)
SC	If, and only if, answers to (iv) & (v) are correct but reverse	d , then awa	rd M1 A0	M1 A0
			8	
(b)	$P((DH \cap BE) \cap (DH \cap BE) \cap (MH \cap GE)) = \frac{92}{750} \times \frac{91}{749} \times \frac{55}{748}$ Multiplied by 3	M1 M1		Correct 3 values multiplied in numerator Correct 3 values multiplied in denominator 0.123 × 0.121 × 0.074 (all AWRT) ⇒ M1 M1 (OE products) Dependent on at least one M1 scored
	or $\binom{92}{2}\binom{55}{1} \div \binom{750}{3}$	(M1 M1) (M1)		Numerator Denominator
	= 0.00328 to 0.00329	A1	4	AWFW (0.00328752)
Notes	1 Incorrect answer with no working ⇒ 0 marks 2 The 3 correct fractions or decimals identified but not multiplied (eg added) ⇒ M1 M0 m0 A0 3 The 3 correct fractions or decimals identified along with 0.0011 (AWRT) ⇒ M1 M1 m0 A0 4 Do not penalise a correct answer given to more than 3sf 5 Answer given as 3.28 × 10 ⁻³ to 3.29 × 10 ⁻³ ⇒ M1 M1 m1 A1			
		Total	12	

Q	Solution	Marks	Total	Comments
4	No MR or MC in this question			
(a) (i)	$r_{uv} = \frac{0.915}{0.9 \text{ to } 0.92}$ = $\frac{0.8 \text{ to } 0.99}{0.8 \text{ to } 0.99}$	B3 (B2) (B1)		AWRT (0.91468) AWFW AWFW
	Attempt at $\sum u \sum u^2 \sum v \sum v^2 \& \sum uv$			81.58 808.2288 70.11 632.3553 & 701.6158 (all 5 attempted)
	or	(M1)		
	Attempt at S_{uu} S_{vv} & S_{uv}			142.69916 140.81409 & 129.65842 (all 3 attempted)
	Attempt at substitution into correct corresponding formula for r_{uv}	(m1)		
	$r_{uv} = 0.915$	(A1)	3	AWRT
(ii)	$r_{xy} = 0.915$	BF1		F on (i) providing $-1 < r_{uv} < +1$ Value quoted must be 0.915(AWRT) or identical to answer in (i)
Notes	1 Award on value only; ignore any explanation or working 3 Calculating r_{xy} using values of $x \& y \Rightarrow B1$ only if r_{xy}	- 0.915 (AWRT)	2 $r_{xy} = r_{uv}$ with no value stated \Rightarrow B0
	r is not affected by linear scaling	- 0.515 (1		OE; accept "Formula" or "It" for <i>r</i> but reference to " linear " is necessary
	or	Bdep1		Dependent on BF1
	Scaling/coding/transformation/change/conversion to u and v is linear			OE; but reference to "linear" is necessary
Notes	 1 All values changed using (same) linear scale/formula ⇒ 3 Linear formula has no effect on r ⇒ B1 5 r is not affected by units (June 2013!) ⇒ B0 			nanged using (same) scale/formula/ $-100 \Rightarrow B0$ no effect on $r \Rightarrow B0$
			2	
(b)	(Very) strong positive (linear) correlation	Bdep1		Dependent on $0.8 \le (r_{xy} \text{ or } r_{uv}) \le 0.99$ OE; must qualify strength and state positive
Notes				
	between			
	(average) qualifying speed and (average) race speed	B1	2	Context; providing $-1 < (r_{xy} \text{ or } r_{uv}) < 1$
Notes				
		Total	7	

Q	Solution	Marks	Total	Comments	
5	No MR or MC in this question			Accept percentage equivalents in (a)	
(a) (i)	p(0) = 0.18	B1		CAO; can be implied from working or correct answer	
	$P(H = 3) = {30 \choose 3} (p)^3 (1-p)^{27}$	M1		Correct expression using $p = 0.18, 0.47, 0.25 \text{ or } 0.10$ Can be implied by correct answer Ignore extra terms	
	= <u>0.111 to 0.112</u>	A1	3	AWFW (0.11151)	
(ii)	$p(\geq 3) = \underline{0.1}$	В1		CAO; can be implied from working or correct answer	
	$P(H \le 5) = 0.926 \text{ to } 0.927$	B1	2	AWFW (0.9268)	
(iii)	$p(\geq 2) = \underline{0.35}$	B1		CAO; can be implied from 0.5078 or 0.3575 (accept 3dp rounding) or correct answer	
	P(H > 10) = 1 - (0.5078 or 0.3575)	M1		Requires "1 – either probability" Accept 3 dp rounding Can be implied by (0.492) but not by (0.642 to 0.643)	
	= <u>0.492</u>	A1	3	AWRT (0.4922)	
SC	For calculation of individual terms: award B1 B2 for 0.492	(AWRT);	award B1	for 0.642 to 0.643 (AWFW)	
(iv)	p(=2) = 0.25			Accept 3 dp rounding	
	$P(5 < H < 10) = 0.8034 \text{ or } 0.8943$ (p_1)	M1		Accept 3 dp rounding Can be implied by correct answer	
	MINUS 0.2026 or 0.0979 (p_2)	M1		Accept 3 dp rounding Can be implied by correct answer	
	= 0.6 to 0.601	A1	3	AWFW (0.6008)	
Notes	1 First M1 is for $(+p_1)$ in calculation 2 Second M1 is for $(-p_2)$ in calculation 3 $(1-p_2) - (1-p_1) \Rightarrow$ M1 M1 (A1) 4 B(30, 0.25) probabilities shown for at least 3 values within $4 \le X \le 10 \Rightarrow$ M2 May be implied by a correct answer Ans $= 0.6$ to $0.601 \Rightarrow$ A1				
				8 9 10 593 0.1298 0.0909	
(b)	$\operatorname{Mean}\left(\mu\operatorname{or}\overline{x}\right) = \underline{108}$	B1		CAO; B(150, 0.72)	
	Variance $(\sigma^2 \text{ or } s^2) = \underline{\textbf{30.2 to 30.3}}$	B1	,	AWFW (30.24)	
Notes	1 If answers are not identified, then assume that order of value 2 If 30.2 to 30.3 labelled as SD (σ or s) \Rightarrow B0	l ues is mean	, variance		
		Total	13		

Q	Solution	Marks	Total	Comments	
6	No MR or MC in this question	Accept he	ight but no	t length instead of depth throughout question	
(a)(i)	$a = \underline{15}$	B1	1	CAO; eg 14.9 \Rightarrow 15 \Rightarrow B0	
(ii)	$b ext{ (gradient/slope)} = \underline{-0.029}$ $b ext{ (gradient/slope)} = \underline{-0.025} ext{ to } \underline{-0.035}$	B2 (B1)		AWRT (-0.02903) AWFW	
	$a ext{ (intercept)} = \underline{14.9}$ $a ext{ (intercept)} = \underline{14 ext{ to } 16}$	B2 (B1)		AWRT (14.90968) AWFW	
	Attempt at $\sum x \sum x^2 \sum y \& \sum xy$	(M1)		1450 280000 107 & 13490 (all 4 attempted) $(\sum y^2 = 1204.42)$	
		,		69750 & -2025	
	Attempt at S_{xx} & S_{xy} Attempt at correct formula for b	(m1)		(both attempted) $(S_{yy} = 59.52)$	
	b = -0.029 (AWRT) $a = 14.9 (AWRT)$	(A1 A1)	4	$(\overline{x} = 145 \& \overline{y} = 10.7)$	
Notes					
(iii)	Seal depth reduces/decreases by 0.03 (AWRT) when pressure increases by 1 –0.03 (AWRT) when pressure increases by 1	B1 Bdep1 (Bdep0)		OE; must be in context OE; must be in context (double negative)	
	or (y, cm) reduces/decreases as (x, kPa) increases	(B1)	2	OE; context not required B0 for reference only to correlation	
Note	1 To score any marks, an explanation must indicate change i	n x affecting	y, not chan	ge in y affecting x	
(b)	$y_{225} = 8.3 \text{ to } 8.4$ $y_{225} = 6.1 \text{ to } 10.4$	B2 (B1)	2	AWFW but see Note 1 (8.37442) AWFW; even if by (9.0 + 7.5)/2	
Notes					
(c)(i)	Extrapolation /outside (observed) range (of x)	B1	(1)	OE	
(ii)	or $y_{525} = -0.3 \text{ to } -0.4$ $x_0 = 510 \text{ to } 515$	B1		AWFW (-0.33226) AWFW (513.59)	
	Negative seal depth is impossible Seal is off/above/under/below the ground Seal is within the barrier	Bdep1	(2)	OE; must be in context Dependent on B1 Negative value is impossible ⇒ B0	
		- TE	3		
		Total	12		

Q	Solution	Marks	Total	Comments
7	No MR or MC in this question			
(a) (i)	Attempt at $\overline{v} - n\sigma = 118 - 65n < 0$	M1		Allow 1.82, 2, 3 or 4 for <i>n</i> with a correct numerical answer
	negative usage/volume is impossible	A1	2	OE; must be in context Negative value is impossible ⇒ A0
Notes	1 $n = 1.82 \implies \underline{\approx 0}$; $n = 2 \implies \underline{-12}$; $n = 3 \implies \underline{-77}$; $n = 2$ 2 Attempt at $P(V < 0) = P\left(Z < \frac{0 - 118}{65}\right)$ or $\left(z = \pm \frac{0 - 118}{65}\right)$ $\Rightarrow P(Z < -1.81 \text{ to } 1.82) \implies \underline{0.03 \text{ to } 0.04}$ (AWFW) A	$\left(\frac{8}{8}\right) \Rightarrow M$ AND negat	l (Standard	olume is impossible \Rightarrow A1
	or \Rightarrow 0 is (1.81 to 1.82)SDs from mean AND negative	e usage/volu	ime is impo	ssible ⇒ A1
(ii)	Sample (size/number/n) is large or 80/sample (size/number/n) is greater than 25/30	B1		OE OE; is sufficient/is enough/implies
	so can apply/use Central Limit Theorem (CLT)	Bdep1		Dependent on B1
	can apply use contain 2 min mostom (C21)	Васрі	2	Bependent on B1
Notes	1 Even if CLT is stated, then reference to parent population i			•
	2 Value(s) of (population) standard deviation (and mean) is/a	ue Known	\Rightarrow B0 Bde	ρυ
(b)(i)	98% (0.98) $\Rightarrow z = 2.32 \text{ to } 2.33$	B1		AWFW (2.3263)
	CI for μ is: $118 \pm \begin{pmatrix} 2.05 \text{ to } 2.06 \\ 2.32 \text{ to } 2.33 \\ 2.57 \text{ to } 2.58 \end{pmatrix} \times \frac{(65 \text{ or } 65.4(\text{AWRT}))}{\sqrt{80 \text{ or } 79}}$	M1		Evaluation of only one CL \Rightarrow M0 Ignore notation $\sqrt{\frac{65^2 \times 80}{79}} = 65.4101$
	Thus $118 \pm (2.32 \text{ to } 2.33) \times \frac{65}{\sqrt{80}}$	A1		Fully correct expression
	Hence 118 ± 17 or $(101, 135)$	Adep1	4	CAO/AWRT (16.90574) Dependent on A1 AWRT
Notes	1 A correct answer with no working ⇒ 4 marks		Seen use of	t -value (2.37 to 2.38) \Rightarrow 0 marks
	3 An incorrect expression for CI followed by a numerically c	correct CI	⇒ 2 solutio	ons \Rightarrow ((0 or 1) + 4)/2 \Rightarrow 2 marks
(ii)	Clear correct comparison of 140 with CI eg 140 is outside/above CI or 140 > UCL	BF1		F on CI providing it does not contain 140 Must be an interval but quoting values for limits is not required
	Disagree with/doubt/reject claim or μ unlikely to be/is not 140	Bdep1	2	OE; dependent on BF1
Notes	1 Statement must clearly indicate that "140 is outside/above the CI" or "140 > UCL" 2 "It/mean/value/OE" is outside/above CI or greater than UCL ⇒ BF0 3 Statements of the form "140 is outside/above 98% of the data/values" ⇒ BF0 4 Statements such as "Claim unlikely/unreasonable/unsupported/incorrect/false/inaccurate/invalid" ⇒			
	Bdep1 but only if BF1 awarded			
		Total	10	