

A-LEVEL Mathematics

Statistics 1A – MS1A/W Mark scheme

6360 June 2014

Version/Stage: Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Copyright © 2014 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and
	accuracy
E	mark is for explanation
\checkmark or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
– <i>x</i> EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
С	candidate
sf	significant figure(s)
dp	decimal place(s)

Key to mark scheme abbreviations

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments		
1	No MR or MC in this question			Ignore units throughout this question		
(a)	Mean = <u>70.4</u>	B2		CAO		
	Mean = <u>70.1 to 70.7</u>	(B1)		AWFW; but exclude 70.5 unless with a correct method (see Note 2)		
	SD = 2.03 or 2.06	B2		Either AWRT (2.0312 or 2.0608)		
	SD = 2 to 2.1	(B1)	4	AWFW		
Notes	5 1 $\sum fx = 2464$ and $\sum fx^2 = 173610$ 2 Using only <i>x</i> -values gives Mean = 70.5 and SD = 2.87 or 3.03 \Rightarrow B0 B0 3 Using only <i>f</i> -values gives Mean = 3.5 and SD = 2.33 or 2.46 \Rightarrow B0 B0 4 If, and only if, B0 B0, then award M1 for seen attempt at $\sum fx \div 35$ or for 2464 $\div 35$					
(b)	Henrietta keeps $(x - 60)$ so:					
	Mean = <u>10.4</u>	BF1		FT on any mean > 60 from (a)(iii) but must subtract 60 and state numerical value > 0		
	SD = <u>2.03 or 2.06</u>	BF1	2	FT on any SD > 0 from (a)(iii) but must state unchanged numerical value > 0		
Notes	1 Mean is "60 fewer" than previously/in (a) (OE) \Rightarrow BF0 2 SD is "exactly same" as previously/in (a) (OE) \Rightarrow BF0					
	3 If mean and SD calculated using $(x-60)$, $\sum f(x-60) = 364$ and $\sum f(x-60)^2 = 3930$,					
	then, to score marks, the answers must be 10.4 (CAO) and 2.03 (AWRT) or 2.06 (AWRT)					
		Total	6			

MS1A_W-Final-MS-Series 14 v1.0

Q	Solution	Marks	Total	Comments
2	No MR or MC in this question		1000	Accept %age equivalents in (a)(i) to (iii)
(a)	<u>Volume, $X \sim N(340, 3.2^2)$</u>			
(i)	$P(X > 345) = P\left(Z < \frac{345 - 340}{3.2}\right)$	M1		Standardising 345 with 340 and 3.2 but allow (340 – 345)
	= P(Z > 1.56)	A1		AWRT; ignore sign (1.5625)
	= 1 - 0.94091 = 0.059	A1	(3)	AWRT (0.05909)
(ii)	P(X < 333) = P(Z < -2.1875) $= 1 - P(Z < 2.1875)$	M1		Correct area change; neither 2.1875 or correct standardising are required Can be implied by final answer < 0.5
	= 1 - 0.98565 = 0.014 to 0.015	A1	(2)	AWFW (0.01435)
(iii)	P(333 < X < 345) = P(Z < 1) - P(Z < -1.5)			
	= [1 - (i)] - (ii) or [1 - (ii)] - (i) or 1 - (i) - (ii)	M1		OE; any correct difference in areas that results in answer > 0 Can be implied by correct answer but not necessarily if answers to (i) &/or (ii) are $(1 - \text{correct answer})$
	= <u>0.926 to 0.927</u>	A1	(2)	AWFW (0.92656)
(iv)	P(X = 340) = 0 or zero or nought or 0%	B1	(1)	CAO; accept nothing else but ignore additional words providing that they are not contradictory (eg impossible so = 0)
Note	1 $P(X = 340) = P(Z = 0) \implies B0$ unless followed by 0 OE			L
			8	
(b) (i)	By symmetry or because $\mu = \frac{330 + 345}{2}$	B1	1	OE
(ii)	$0.975 \implies z = \mathbf{\underline{1.96}}$	B1		AWRT; ignore sign (1.9600)
	$\left(\frac{345-337.5}{\sigma}\right) = 1.96$ or $\left(\frac{330-337.5}{\sigma}\right) = -1.96$	M1		Standardising 345 or 330 with 337.5 and σ or <i>s</i> ; and equating to 1.96 (<i>ignore sign</i>) Can be implied by correct answer
	σ = <u>3.8</u>	A1	3	AWRT(3.82653)Must be consistent signs throughout
		Total	12	

	C L 4		T (1	C t		
Q 3	Solution	Marks	Total	Comments		
_	No MR or MC in this question except as indicated in the following Notes					
Notes	 If correct fraction, percentage or ratio is followed by incorrect decimal, then apply ISW but apply penalties as in Notes 2 to 5 At least one decimal answer given to more than 3 dp (including 0.0320) or at least one recurring decimal answer 					
for	(eg 0.293 or 0.290) are penalised by 1 mark					
part	3 At least one fractional answer (eg 22/75) is penalised by	1 mark				
(a)	4 At least one percentage answer (eg 29.3) is penalised by					
	5 At least one ratio answer (eg 22:75) is penalised by 2 marks					
	Mark answers as below and then apply MR-1 or MR-2 as	appropriate	(if available) at end of question before totalling marks		
(a)(i)	$P(FH) = \underline{220/750} = \underline{22/75} = 0.293$	B1		CAO/AWRT (0.29333)		
			(1)			
(ii)	$P(AH \cap BE) =$					
	$\frac{24}{750} = \frac{8}{250} = \frac{4}{125} = 0.032$	B1		CAO		
			(1)			
(iii)	$P(AH \cup BE \text{ but not both}) = \frac{110 + 215 - 2 \times 24}{750}$	2.61		OE		
	$P(AH \cup BE \text{ but not both}) =$	M1		Can be implied by correct answer		
	150			1 2		
	= 277/750 = 0.369	A1		CAO/AWRT (0.36933)		
			(2)			
SC	Award B1 for 301/750 or 0.401(33)		(-)			
(iv)	64 /220			OE		
()	$P(GE FH) = \frac{64}{750} / \frac{220}{750} =$	M1		Can be implied by correct answer		
	/50/ /50			Can be implied by correct answer		
	64/220 - 22/110 - 16/55 - 0.201	A 1		CAO/AWRT (0.29091)		
	$\underline{64/220} = \underline{32/110} = \underline{16/55} = \underline{0.291}$	A1	(2)	CAO/AWRT (0.29091)		
			(2) 6			
			U			
(b)	$P((DH \cap BE) \cap (DH \cap BE) \cap (MH \cap GE)) =$					
(0)	$\Gamma((D\Pi \cap DE) \cap (D\Pi \cap DE) \cap (W\Pi \cap OE)) =$			Correct 3 values multiplied in numerator		
	92 91 55	M1		Correct 3 values multiplied in denominator		
	$\frac{92}{750} \times \frac{91}{749} \times \frac{55}{748}$	M1		$0.123 \times 0.121 \times 0.074$ (all AWRT)		
				\Rightarrow M1 M1 (OE products)		
	Multiplied by 3	m1		Dependent on at least one M1 scored		
	or	a				
	$\binom{92}{2}\binom{55}{1}$ ÷ $\binom{750}{3}$	(M1 M1)		Numerator		
		(M1)		Denominator		
	= (299/90950) = 0.00328 to 0.00329	A1		AWFW (0.00328752)		
			4			
Notes						
	2 The 3 correct fractions or decimals identified but not multiplied (eg added) \Rightarrow M1 M0 m0 A0					
	3 The 3 correct fractions or decimals identified along with 0.0011 (AWRT) \Rightarrow M1 M1 m0 A0					
	4 Do not penalise a correct answer given to more than 3sf 5 Answer given as 3.28×10^{-3} to $3.29 \times 10^{-3} \implies M1 M1$					
	$\sim 1 \text{ movel given as } 5.20 \times 10^{-10} \text{ to } 5.27 \times 10^{-10} \text{ with with}$					
		Total	10			
		IUtai	10			

Q	Solution	Marks	Total	Comments
4	No MR or MC in this question	1.141 HD	1000	Comments
(a) (i)	$r_{uv} = \underbrace{0.915}_{0.9 \text{ to } 0.92}_{0.8 \text{ to } 0.99}$	B3 (B2) (B1)		AWRT (0.91468) AWFW AWFW
	Attempt at $\sum u \sum u^2 \sum v \sum v^2 \& \sum uv$			81.58 808.2288 70.11 632.3553 & 701.6158 (all 5 attempted)
	or	(M1)		
	Attempt at S_{uu} S_{vv} & S_{uv}			142.69916 140.81409 & 129.65842 (all 3 attempted)
	Attempt at substitution into correct corresponding formula for r_{uv}	(m1)		
	$r_{uv} = 0.915$	(A1)	3	AWRT
(ii)	$r_{xy} = 0.915$	BF1		F on (i) providing $-1 < r_{uv} < +1$ Value quoted must be 0.915(AWRT) or identical to answer in (i)
Notes	1 Award on value only; ignore any explanation or working 3 Calculating r_{xy} using values of $x \& y \Rightarrow B1$ only if r_{xy}	- 0.915 (2 $r_{xy} = r_{uv}$ with no value stated \Rightarrow B0
	<i>r</i> is not affected by linear scaling		YWRI)	OE; accept "Formula" or "It" for r but reference to " linear " is necessary
	or	Bdep1		Dependent on BF1
	Scaling/coding/transformation/change/ conversion to <i>u</i> and <i>v</i> is linear			OE; but reference to " linear " is necessary
Notes	1 All values changed using (same) linear scale/formula \Rightarrow B12 All values changed using (same) scale/formula/-100 \Rightarrow B13 Linear formula has no effect on $r \Rightarrow$ B14 Formula has no effect on $r \Rightarrow$ B05 r is not affected by units (June 2013!) \Rightarrow B0			
			2	
(b)	(Very) strong positive (linear) correlation	Bdep1		Dependent on $0.8 \le (r_{xy} \text{ or } r_{uv}) \le 0.99$ OE; must qualify strength and state positive
Notes				
	between			
	(average) qualifying speed and (average) race speed	B1	2	Context; providing $-1 < (r_{xy} \text{ or } r_{uy}) < 1$
Notes	1 Accept "qualifying mph" and "race mph" but not "mph	" without id		1
	2 Accept "fastest/qualifying lap" and "three/ race laps"	Total	7	
		IUIAI	1	

QSolutionMarksTotalCom5No MR or MC in this questionAccept percentage equation(a) $p(0) = 0.18$ B1CAO; can be implively working or correct					
(a) (i) $p(0) = 0.18$ B1 CAO; can be impl					
(i) $p(0) = 0.18$ B1 CAO; can be impl					
$P(H = 3) = {\binom{30}{3}} (p)^3 (1-p)^{27}$ M1 Correct expression $p = 0.18, 0.47, 0.2$ Can be implied by Ignore extra terms	25 or 0.10				
= <u>0.111 to 0.112</u> A1 AWFW 3	(0.11151)				
(ii) $p(\geq 3) = \underline{0.1}$ B1 CAO; can be imply working or correct					
$P(H \le 5) = 0.926 \text{ to } 0.927 B1 AWFW$	(0.9268)				
(iii) $p(\geq 2) = \underline{0.35}$ B1 CAO; can be impl 0.3575 (accept 3dp or correct answer					
$P(H > 10) = \underline{1 - (0.5078 \text{ or } 0.3575)} M1$ M1 Requires "1 - eit Accept 3 dp round Can be implied by but not by (0.642)	ding (0.492)				
$= \mathbf{\underline{0.492}} \qquad A1 \qquad \mathbf{AWRT}$	(0.4922)				
SC For calculation of individual terms: award B1 B2 for 0.492 (AWRT); award B1 for 0.642 to 0.643 (AWR	FW)				
(iv) $p(=2) = 0.25$ P(5 < H < 10) = 0.8034 or 0.8943 (p_1) M1 Accept 3 dp round Can be implied by					
MINUS0.2026 or 0.0979 (p_2) M1Accept 3 dp round Can be implied by	0				
$= \underline{0.6 \text{ to } 0.601} \qquad \text{A1} \qquad 3 \qquad \text{AWFW}$	(0.6008)				
	4 B(30, 0.25) probabilities shown for at least 3 values within $4 \le X \le 10 \implies M2$ May be implied by a correct answer				
x 4 5 6 7 8 9 10 $P(X = x)$ 0.0605 0.1047 0.1455 0.1662 0.1593 0.1298 0.09					
Part (a) 11					

				a 1	
Q	Solution	Marks	Total	Comments	
5	No MR or MC in this question				
	Part (a)		(11)		
(b)					
(i)	Mean $(\mu \operatorname{or} \overline{x}) = 9.4$	B1		CAO	B(20, 0.47)
	(,)				
	Variance $(\sigma^2 \operatorname{or} s^2) = 4.98 \text{ to } 5$	B1		AWFW	(4.982)
	$(0 \ 013) = \frac{4.90 \ 003}{100}$	DI		AWIW	(4.982)
			2		
Notes	1 If answers are not identified, then assume that order of value	ies is mean	, variance		
	2 If 4.98 to 5 labelled as SD (σ or s) \Rightarrow B0				
<i>(</i> ••)					
(ii)	Mean or 6 is less than/different to 9.4			Both OE	
	Variance or 21.2 is	Bdep1		Dependent on B1 B1 in	
	greater than/different to 4.98 to 5			Must be 2 clear correct	comparisons
		D.11		Demondant en Dile 1	
	Agree with claim or no reason to doubt claim	Bdep1	2	Dependent on Bdep1	
Note	$\frac{2}{1 \text{ Statements such as "Claim likely/reasonable/supported/correct/true/possible/valid"} \Rightarrow \text{ Bdep1 providing previous Bdep1}$				
11010	Succinents such as Claim intergreasonable/supported/co.	licer, uue, pe			, Bacht
	Part (b)		(4)		
		Total	15		

Q	Solution	Marks	Total	Comments
6	No MR or MC in this question	11111110		
(a) (i)	Attempt at $\overline{v} - n\sigma = 118 - 65n < 0$	M1		Allow 1.82, 2, 3 or 4 for n with a correct numerical answer
	and negative usage/volume is impossible	A1	2	OE; must be in context Negative value is impossible \Rightarrow A0
Notes	1 $n = 1.82 \implies \underline{\approx 0}; n = 2 \implies \underline{-12}; n = 3 \implies \underline{-77}; n$			
	2 Attempt at $P(V < 0) = P\left(Z < \frac{0-118}{65}\right)$ or $\left(z = \pm \frac{0-118}{65}\right)$	$\left(\frac{8}{2}\right) \Rightarrow M$	1 (Standard	dising 0 using 118 and 65)
	$\Rightarrow P(Z < -1.81 \text{ to } 1.82) \Rightarrow 0.03 \text{ to } 0.04 \text{ (AWFW)} A$	ND negat	ive usage/v	olume is impossible \Rightarrow A1
	or \Rightarrow 0 is (1.81 to 1.82)SDs from mean AND negative	e usage/volu	ime is impo	ssible \Rightarrow Al
(ii)	Sample (size/number/n) is large			OE
	or 20/ 1/: / 1/: / 25/20	B1		
	$\frac{80}{\text{so}}$ so			OE; is sufficient/is enough/implies
	can apply/use Central Limit Theorem (CLT)	Bdep1	_	Dependent on B1
Notes	1 Even if CLT is stated, then reference to parent population i	e thus norm	2	
inotes	 2 Value(s) of (population) standard deviation (and mean) is/a 			•
(b)(i)	98% (0.98) $\Rightarrow z = 2.32 \text{ to } 2.33$	B1		AWFW (2.3263)
	CI for μ is: 118 $\pm \begin{pmatrix} 2.05 \text{ to } 2.06 \\ 2.32 \text{ to } 2.33 \\ 2.57 \text{ to } 2.58 \end{pmatrix} \times \frac{(65 \text{ or } 65.4(\text{AWRT}))}{\sqrt{80 \text{ or } 79}}$	M1		Evaluation of only one CL \Rightarrow M0 Ignore notation $\sqrt{\frac{65^2 \times 80}{79}} = 65.4101$
	Thus $118 \pm (2.32 \text{ to } 2.33) \times \frac{65}{\sqrt{80}}$	A1		Fully correct expression
	Hence $\frac{118 \pm 17}{(101, 135)}$	Adep1	4	CAO/AWRT (16.90574) Dependent on A1 AWRT
Notes	1 A correct answer with no working \Rightarrow 4 marks		Seen use of	<i>t</i> -value (2.37 to 2.38) \Rightarrow 0 marks
	3 An incorrect expression for CI followed by a numerically c	correct CI =	$\Rightarrow 2 \text{ solution}$	$pns \Rightarrow ((0 \text{ or } 1) + 4)/2 \Rightarrow 2 \text{ marks}$
(ii)	Clear correct comparison of 140 with CI eg 140 is outside/above CI or 140 > UCL	BF1		F on CI providing it does not contain 140 Must be an interval but quoting values for limits is not required
	Disagree with/doubt/reject claim or μ unlikely to be/is not 140	Bdep1		OE; dependent on BF1
			2	
Notes	 Statement must clearly indicate that "140 is outside/above the CI" or "140 > UCL" 2 "It/mean/value/OE" is outside/above CI or greater than UCL ⇒ BF0 3 Statements of the form "140 is outside/above 98% of the data/values" ⇒ BF0 4 Statements such as "Claim unlikely/unreasonable/unsupported/incorrect/false/inaccurate/invalid" ⇒ Bdep1 but only if BF1 awarded 			
		Tetal	10	
		Total	10	