AQA

A-LEVEL MATHEMATICS

Statistics 4 - MSO4
Mark scheme

6360
June 2014

Version/Stage: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or marks and is for method and accuracy
E	mark is for explanation
Vor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Mark	Total	Comment
1 (a)	$\begin{aligned} \mathrm{F}(t) & =\int_{0}^{t} 5 \mathrm{e}^{-5 t} \mathrm{~d} t=\left[-\mathrm{e}^{-5 t}\right]_{0}^{t} \\ & =1-\mathrm{e}^{-5 t} \quad t \geq 0 \end{aligned}$	$\begin{gathered} \text { M1A1 } \\ \text { A1 } \end{gathered}$		If result quoted without proof award B1. Incorrect notation A0, unless recovery is clear. Need not see $t \geq 0$ for A1.
	$\mathrm{F}(t)=0$ otherwise, or $t<0$.	B1	4	
	$1-\left(1-\mathrm{e}^{-1}\right)=\mathrm{e}^{-1} \quad(0.368)$	B1	1	
(c)	$\begin{aligned} & \mathrm{e}^{-5 c}=0.05 \quad \Rightarrow \quad \mathrm{e}^{5 c}=20 \\ & \Rightarrow c=\frac{1}{5} \ln 20 \quad(0.599) \end{aligned}$	M1		
			2	simplify a logarithmic answer is required.
	Total		7	

Q	Solution	Mark	Total	Comment
3(a)	$S^{2}{ }^{2}=0.41636$	M1		Either
	$S r^{2}=0.04778$	A1		Both correct. SC B1 for one only.
	$\mathrm{v}_{1}=11, \mathrm{v}_{2}=8$	B1		Both
	$\mathrm{F}_{11,8}=7.104, \mathrm{~F}_{8,11}=5.682$	B1		Both Dfs can be implied by correct CVs.
	$F_{\text {calc }}=\frac{0.41636}{0.04778}=8.7146$	M1		
	$\frac{1}{7.104} \leq \frac{V R}{8.7146} \leq 5.682$	A1ft		ft on v_{1} and v_{2}. Accept 5.7
	$\Rightarrow 1.23 \leq V R \leq 49.5$	A1	7	CAO
(b)	$1 \notin \mathrm{Cl}$	E1v		Accept 1 is below the Cl .
	\Rightarrow broadband speed is more variable in villages.		2	
	Total		9	

Q	Solution	Mark	Total	Comment
4(a)	Independent (and/or) random samples. Normal distributions with common variance.	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	2	If 'independent' and 'random' only, award B1.Second B1 req. 'Normal' \& 'Common Var'.
(b)	$\mathrm{H}_{0}: \mu_{A}=\mu_{B} \quad \mathrm{H}_{1}: \mu_{A} \neq \mu_{B}$	B1		Both
	$\bar{X}_{A}=9.7 \quad s_{A}=0.56315 \quad\left(s_{A}{ }^{2}=0.3171\right.$	B1		Both. (or 0.2887)
	$\bar{X}_{B}=8.7 \quad s_{B}=0.61319 \quad\left(s_{B}{ }^{2}=0.376\right)$	B1		Both (or 0.2737)
	$s^{2}=\frac{7 \times 0.5632^{2}+5 \times 0.6132^{2}}{8+6-2}=0.3417$	M1A1		OE
	$t_{\text {calc }}=\frac{1-0}{0.5845 \sqrt{\frac{1}{8}+\frac{1}{6}}}=3.17$	M1A1		awrt
	$v=12 \quad t_{\text {crit }}= \pm 2.681$	B1B1		Both signs not required. Df can
	$3.17>2.681 \Rightarrow$ reject H_{0}. Sufficient evidence to indicate that means are different at 2% level of significance.	A1 $\sqrt{ }$	10	be implied by correct CV. Compares and states conclusion context. $\sqrt{ }$ on t.
	Total		12	

Q	Solution	Mark	Total	Comment
5(a)	$\begin{aligned} & \bar{x}=\frac{360}{100}=3.6 \\ & 12 p=3.6 \Rightarrow p=0.3 \end{aligned}$	B1 B1	2	CAO CSO
(b)	$\mathrm{H}_{0}: \mathrm{B}(12, p)$ is an appropriate model.	B1		
	$\begin{aligned} & \text { Distribution } \mathrm{B}(12,0.3) \text { : } \\ & 0.0138 \\ & 0.0712 \quad 0.1678 \\ & 0.1585 \\ & 0.1179 \end{aligned}$	M1A1		Attempt at probabilities; ≥ 4 correct for M1; A1 if all correct. (Note: Tables give 0.2312)
	Expected frequencies are: $\begin{array}{llllll} 1.38 & 7.12 & 16.78 & 23.97 & 23.11 & 15.85 \end{array} 11.79$	M1		Probabilities $\times 100$.
	$\begin{array}{lcccrrc} \mathbf{O}: & 6 & 14 & 28 & 27 & 16 & 9 \\ \text { E: } & 8.5 & 16.78 & 23.97 & 23.11 & 15.85 & 11.79 \\ \chi_{\text {calc }}^{2}=\sum\left\{\frac{(\mathrm{O}-\mathrm{E})^{2}}{\mathrm{E}}\right\}=3.190 \end{array}$	M1 M1A1		Combines first two classes. Attempt at formula ; awfw 3.15 to 3.25 .
	$v=6-2=4 \quad \chi_{\text {crit }}^{2}=7.779$	B1B1 $\sqrt{ }$		Ft on $v=7-2=5$ and 9.236 (When classes not combined.)
	$3.190<7.779 \Rightarrow$ Accept H_{0} $B(12, p)$ is a suitable model.	E1V	10	Compare and state conclusion in context. $\sqrt{ }$ on χ^{2}
	Total		12	

Q	Solution	Mark	Total	Comment
6(a)	$\begin{aligned} & \mathrm{E}\left(\bar{X}_{1}\right)=\frac{n_{1} \mu}{n_{1}}=\mu \text { and } \mathrm{E}\left(\bar{X}_{2}\right)=\frac{n_{2} \mu}{n_{2}}=\mu \\ & \mathrm{E}\left(k \bar{X}_{1}+(1-k) \bar{X}_{2}\right)=k \mathrm{E}\left(\bar{X}_{1}\right)+(1-k) \mathrm{E}\left(\bar{X}_{2}\right) \\ & =k \mu+(1-k) \mu=\mu \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	Stated or implied.
(b)	$\begin{aligned} & \operatorname{Var}\left(k \bar{X}_{1}+(1-k) \bar{X}_{2}\right) \\ & \quad=k^{2} \operatorname{Var}\left(\bar{X}_{1}\right)+(1-k)^{2} \operatorname{Var}\left(\bar{X}_{2}\right) \\ & \operatorname{Var}\left(\bar{X}_{1}\right)=\frac{\sigma^{2}}{n_{1}} \text { and } \operatorname{Var}\left(\bar{X}_{2}\right)=\frac{\sigma^{2}}{n_{2}} \\ & \Rightarrow V=k^{2} \frac{\sigma^{2}}{n_{1}}+(1-k)^{2} \frac{\sigma^{2}}{n_{2}} \quad(\mathrm{OG}) \end{aligned}$	M1 A1	2	Stated or implied.
(c)	$\begin{aligned} & \frac{\mathrm{d} V}{\mathrm{~d} k}=\sigma^{2}\left\{\frac{2 k}{n_{1}}-\frac{2(1-k)}{n_{2}}\right\} \\ & \frac{k}{n_{1}}-\frac{(1-k)}{n_{2}}=0 \Rightarrow k=\frac{n_{1}}{n_{1}+n_{2}} \end{aligned}$	$\begin{gathered} \text { M1A1 } \\ \text { A1 } \end{gathered}$	3	Using $n_{1}=n_{2}=n$ from the start $\Rightarrow \mathrm{MO}$.
(d)(i)	$k \bar{X}_{1}+(1-k) \bar{X}_{2}=\frac{n_{1} \bar{X}_{1}+n_{2} \bar{X}_{2}}{n_{1}+n_{2}} \quad \text { (OE) }$	M1A1V	2	F.t. on algebraic form. $\frac{1}{2}$ gets AO.
(ii) (iii)	This is the weighted average of means. $\frac{\mathrm{d}^{2} V}{\mathrm{~d} k^{2}}=2 \sigma^{2}\left\{\frac{1}{n_{1}}+\frac{1}{n_{2}}\right\}>0 \Rightarrow \text { minimum } V .$	E1 M1A1	2	Explanation in terms of proportionality, or 'pooled estimate' OK. No omissions.
	To		12	

Q	Solution	Mark	Total	Comment
7(a)(i)	$\begin{aligned} & \mathrm{E}\left(X^{2}\right)=p\left(1+2 q+3 q^{2}+4 q^{3}+\cdots\right) \\ & \quad+2 p q\left(1+3 q^{2}+6 q^{3}+10 q^{4}+\cdots\right) \\ & \text { where } p+q=1 \end{aligned}$	M1A1		Accept proof by generating functions, or any other valid method.
	$=\frac{p}{(1-q)^{2}}+\frac{2 p q}{(1-q)^{3}}=\frac{1}{p}+\frac{2(1-p)}{p^{2}}$	M1A1	4	CSO (AG)
(ii)	$\begin{align*} \Rightarrow \operatorname{Var}(X) & =\frac{1}{p}+\frac{2(1-p)}{p^{2}}-\frac{1}{p^{2}} \\ & =\frac{p+2-p-1}{p^{2}}=\frac{1-p}{p^{2}} \tag{AG} \end{align*}$	B1	1	
(iii)	$\begin{aligned} & p=\frac{1}{2} \Rightarrow \operatorname{Var}(X)=2 \\ & \mathrm{P}(X>2)=\left(\frac{1}{2}\right)^{2}=\frac{1}{4} \end{aligned}$	$\begin{gathered} \mathrm{B} 1 \\ \mathrm{M} 1 \mathrm{~A} 1 \end{gathered}$	3	
(b)(i)	$\begin{aligned} & \frac{1}{30}+\frac{2}{3} \times \frac{1}{30}+\left(\frac{2}{3}\right)^{2} \times \frac{1}{30} \\ & =\frac{19}{270} \end{aligned}$	$\begin{gathered} \text { M1A1 } \\ \text { A1 } \end{gathered}$	3	In a round: $\begin{aligned} & P(\text { both miss })=\frac{4}{5} \times \frac{5}{6}=\frac{2}{3} . \\ & P(\text { both hit })=\frac{1}{5} \times \frac{1}{6}=\frac{1}{30} . \end{aligned}$
(ii)	$\frac{1}{30} \div\left(1-\frac{2}{3}\right)=\frac{1}{10}$	M1A1	2	Sum to infinity of series started in part (i).
(iii)	$\frac{1}{6}+\frac{2}{3} \times \frac{1}{6}+\left(\frac{2}{3}\right)^{2} \times \frac{1}{6}+\cdots$	M1A1		Alternatively: $P(R$ hits and W misses $)$ $\begin{equation*} =\frac{1}{5} \times \frac{5}{6}=\frac{1}{6} . \tag{B1} \end{equation*}$
	$=\frac{1}{6} \div \frac{1}{3}=\frac{1}{2}$	A1	3	$\begin{aligned} & \text { Then } \mathrm{P}_{r}=\frac{1}{6}+\frac{2}{3} \mathrm{P}_{r} \Rightarrow \frac{1}{3} \mathrm{P}_{r}=\frac{1}{6} \\ & \Rightarrow \mathrm{P}_{r}=\frac{1}{6} \div \frac{1}{3}=\frac{1}{2} \quad \text { (M1A1) } \end{aligned}$
	Total		16	
	TOTAL		75	

