A-LEVEL

Mathematics

Pure Core 1 - MPC1
Mark scheme

6360

June 2014

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\checkmark orft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-xEE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
C	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Mark \& Total \& Comment

\hline $$
\begin{aligned}
& 1 \\
& \text { (a)(i) }
\end{aligned}
$$ \& $\operatorname{Grad} A B=\frac{-5-2}{3--1} \quad$ OE
$$
=-\frac{7}{4}
$$ \& M1
A1 \& 2 \& $$
\text { correct unsimplified eg } \frac{2--5}{-1-3}
$$

\hline (ii) \& $$
\left.\begin{array}{l}
\left.\begin{array}{l}
y--5=' t h e i r ~ g r a d ' \\
y-2=\text { 'their grad' } \\
\\
y-2=-\frac{7}{4}(x+3) \\
y+5=-\frac{7}{4}(x-3) \\
y=-\frac{7}{4} x+\frac{1}{4}
\end{array}\right]
\end{array}\right]
$$
$$
7 x+4 y=1
$$ \& M1

A1

A1 \& 3 \& | either pair of coordinates used correctly and attempt to find c if using $y=m x+c$ |
| :--- |
| OE, any form of correct equation with - - simplified to + |
| integer coefficients \& in this form |

\hline (b)(i) \& $$
(M) \quad(1,-1.5)
$$ \& B1 \& 1 \& condone $x=1, y=-\frac{3}{2}$

\hline \multirow[t]{3}{*}{(ii)} \& $$
\text { Perp grad }=\frac{4}{7}
$$ \& B1 \checkmark \& \& perp grad $=-1 /$ 'their' $\operatorname{grad} A B$

\hline \& $$
y--\frac{3}{2}={ }^{\prime} \text { their' } \frac{4}{7}(x-1)
$$ \& M1 \& \& ft 'their M ' but must have attempted perpendicular gradient

\hline \& $$
y+\frac{3}{2}=\frac{4}{7}(x-1)
$$ \& A1 \& 3 \& any correct form with -- simplified to + eg $8 x-14 y=29 ; y=\frac{4}{7} x+c, c=-\frac{29}{14}$

\hline \multirow[t]{3}{*}{(c)} \& $$
\begin{gathered}
\left(A C^{2}=\right)(k--1)^{2}+(2 k+3-2)^{2} \\
k^{2}+2 k+1+4 k^{2}+4 k+1=13 \\
5 k^{2}+6 k-11=0
\end{gathered}
$$ \& \[

$$
\begin{aligned}
& \text { M1 } \\
& \text { A1 }
\end{aligned}
$$

\] \& \& \[

(k+1)^{2}+(2 k+1)^{2}
\]

\hline \& $$
(5 k+11)(k-1)=0
$$ \& A1 \& \& correct factors or correct use of formula as far as $\frac{-6 \pm \sqrt{256}}{10}$

\hline \& $$
\Rightarrow k=1, \quad k=-\frac{11}{5}
$$ \& A1 \& 4 \&

\hline \& Total \& \& 13 \&

\hline
\end{tabular}

(a) (i) NMS $\operatorname{grad} A B=-\frac{7}{4}$ earns 2 marks.
(ii) must simplify $y--5$ to $y+5$ or $x--1$ to $x+1$ for first A1

Condone $8 y+14 x=2$ etc for final A1, but not $7 x+4 y-1=0$ etc
(b)(ii) If their gradient of $A B$ is m, then use of $-m$ or $1 / m$ can earn M1. For A1, $1 /\left(\frac{7}{4}\right), \frac{14.5}{7}$ etc must be simplified.

Q	Solution	Mark	Total	Comment
2	$\begin{aligned} & \frac{15+7 \sqrt{3}}{9+5 \sqrt{3}} \times \frac{9-5 \sqrt{3}}{9-5 \sqrt{3}} \\ & (\text { Numerator }=) 135-75 \sqrt{3}+63 \sqrt{3}-105 \\ & (\text { Denominator }=81-45 \sqrt{3}+45 \sqrt{3}-75) \\ & =6 \end{aligned} \begin{gathered} \left(\frac{30-12 \sqrt{3}}{6}=\right) 5-2 \sqrt{3} \end{gathered}$ Alternative $\begin{gathered} (9+5 \sqrt{3})(m+n \sqrt{3}) \\ =9 m+15 n+5 m \sqrt{3}+9 n \sqrt{3} \\ 9 m+15 n=15, \quad 5 m+9 n=7 \\ m=5 \quad, \quad n=-2 \\ 5-2 \sqrt{3} \end{gathered}$	M1 A1 B1 A1cso (M1) (A1) (A1) (A1)	4	writing correct quotient and multiplying by correct conjugate of denominator $30-12 \sqrt{3}$ must be seen as denominator units (cm) need not be given must be correct both equations correct either correct
	Total		4	
	No marks if candidate uses $\frac{9+5 \sqrt{3}}{15+7 \sqrt{3}}$ Condone multiplication by $9-5 \sqrt{3}$ instead of $\frac{9-5 \sqrt{3}}{9-5 \sqrt{3}}$ for M1 only if subsequent working shows multiplication by both numerator and denominator - otherwise M0. May use alternative conjugate $\frac{15+7 \sqrt{3}}{9+5 \sqrt{3}} \times \frac{5 \sqrt{3}-9}{5 \sqrt{3}-9}$ M1 numerator $=12 \sqrt{3}-30$ A1 denominator $=-6 \mathbf{B 1}$ Ignore any incorrect units			

Q	Solution	Mark	Total	Comment
3 (a)(i) (ii)	$\begin{aligned} & \left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right) 10 x^{4}+20 x^{3} \\ & \left(\frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=\right) 40 x^{3}+60 x^{2} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { B1 } \checkmark \end{gathered}$	2 1	one term correct all correct (no +c etc) ft their $\frac{\mathrm{d} y}{\mathrm{~d} x}$
(b)(i)	$\left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right) \quad 10-20=-10$	B1 \checkmark		correctly sub $x=-1$ into their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and evaluated correctly
	$\frac{\mathrm{d} y}{\mathrm{~d} x}<0$ (therefore y is) decreasing	E1 \checkmark	2	Must state "decreasing" and $\frac{\mathrm{d} y}{\mathrm{~d} x}<0$ ft 'therefore y is increasing' and reason if their value of $\frac{\mathrm{d} y}{\mathrm{~d} x}>0$
(ii)	(When $x=-1) \quad y=2$	B1		
	$y-' \text { their' } 2=\text { 'their grad '(} x--1 \text {) }$ but must be tangent and not normal	M1		ft ' their' value of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ when $x=-1$ and 'their' y-coordinate
	$y-2=-10(x+1)$ or $y=-10 x-8$ etc	A1	3	any correct tangent eqn from correct $\frac{\mathrm{d} y}{\mathrm{~d} x}$
(c)	$\begin{aligned} & \left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right) 10(-2)^{4}+20(-2)^{3} \\ & \quad=160-160=0 \Rightarrow \text { stationary point } \\ & \text { (when } x=-2 \text {) } \end{aligned}$	M1 A1		correctly sub $x=-2$ into their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ correctly shown that $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ plus correct statement
	$\begin{aligned} \left(\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}\right. & =) 40(-2)^{3}+60(-2)^{2} \\ & =-320+240=-80<0 \end{aligned}$ (Therefore) maximum (point at Q)	M1 A1	4	correctly sub $x=-2$ into their $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ or other suitable test for $\mathrm{max} / \mathrm{min}$ either $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=-320+240<0$ or $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=-80<0$ plus conclusion
	Total		12	
(b) (i)	Accept "gradient is negative so decreasing" Do not accept "because it is negative" or " May earn M1 for attempt to find c using y Must simplify $x--1$ to $x+1$ for A1 May write "their" $10 x^{4}+20 x^{3}=0$ and atte leading to " $x=-2 \ldots$ stationary pt" for A1	or E1 $\frac{y}{x}=-10$ $=m x+c \text { if }$ pt to fin	as reas learly x for fir	ns for E1 nding tangent and not normal. st M1

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Mark \& Total \& Comment \\
\hline \begin{tabular}{l}
(a)(i) \\
(ii) \\
(b)(i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
\[
k-(x+3)^{2}
\]
\[
\begin{aligned}
\& 25-(x+3)^{2} \\
\& (\text { Max value }=) 25 \\
\& (8+x)(2-x)
\end{aligned}
\]
 \\
crosses \(x\)-axis at -8 and 2
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
B1 \(\sqrt{ }\) \\
B1 \\
M1 \\
A1 \\
B1
\end{tabular} \& 1
1

3 \& | or $x^{2}+6 x-16=(x+3)^{2}-25$ |
| :--- |
| or $q=3$ stated |
| ft their p |
| \cap shape |
| curve roughly symmetrical with max to left of y-axis, curve in all 4 quadrants and y-intercept 16 stated or marked on y-axis |
| correct - stated or marked on x-axis |

\hline \& Total \& \& 7 \&

\hline | (a)(i) |
| :--- |
| (ii) |
| (b)(i) |
| (ii) | \& \multicolumn{4}{|l|}{| Example 16-(x+3) $)^{2}-9$ earns M1 |
| :--- |
| $(-3,25)$ scores B0 since maximum value not identified Allow maximum given as " $y=25$ " |
| Condone $-(x-2)(x+8),(x-2)(-x-8)$ etc Withhold B1 if more than 2 intercepts |}

\hline
\end{tabular}

Q	Solution	Mark	Total	Comment
(a) (b) (c)	$\begin{gathered} (-3)^{3}+c(-3)^{2}+d(-3)+3 \\ -27+9 c-3 d+3=0 \\ \Rightarrow 3 c-d=8 \\ 2^{3}+c \times 2^{2}+d \times 2+3=65 \\ 8+4 c+2 d+3=65 \\ 5 c=35 \quad \text { or } 10 d=130 \quad \mathrm{OE} \\ c=7 \quad d=13 \end{gathered}$	M1 A1 M1 A1 M1 A1 A1		$p(-3)$ attempted $\text { AGG }\left\{\begin{array}{l} \text { must see this line or equivalent, } \\ \text { and must have }=0 \text { on right or left } \\ \text { before final result } \\ \text { be convinced } \end{array}\right.$ $\mathrm{p}(2)$ attempted $\& \ldots=65$ correct equation in any form simplifying powers of 2 eg $4 c+2 d=54$ correct elimination of c or d using both $3 c-d=8$ and their equation from (b)
	Total		7	
(a) (b) (c)	May use long division by $x+3$ but must reach remainder term for M1 Condone missing brackets in $\mathrm{p}(-3)$ expression if recovered later as $-27+9 c+\ldots$ to earn A1 Treat parts (b) and (c) holistically May use long division by $x-2$ as far as remainder and equate their remainder to 65 for M1 Example $4 c+2(3 c-8)=54$ earns M1 for eliminating d if equation in part (b) is correct			

Q	Solution	Mark	Total	Comment
$\begin{aligned} & 6 \\ & \text { (a)(i) } \end{aligned}$	$\begin{aligned} & x^{3}-x^{2}-5 x+7=x+7 \\ & \Rightarrow x^{3}-x^{2}-5 x=x \end{aligned}$	M1		must see this line OE eg $x^{3}-x^{2}-6 x=0$
	$(x \neq 0) \Rightarrow x^{2}-x-6=0$	A1	2	AG
(ii)	$(x-3)(x+2)$	M1		correct
	$x=3, \quad x=-2$	A1		both x values correct
	$A(-2,5)$ and $C(3,10)$	A1	3	both pairs of coordinates correct
(b)	$\frac{x^{4}}{4}-\frac{x^{3}}{3}-\frac{5 x^{2}}{2}+7 x \quad(+c)$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { A1 } \end{gathered}$	3	2 terms correct another term correct all correct
(c)	$F(-2)=\left[\frac{(-2)^{4}}{4}-\frac{(-2)^{3}}{3}-\frac{5(-2)^{2}}{2}+7(-2)\right]$	M1		F('their'-2) correctly substituting into their answer to (b) , but must have scored M1 in part (b)
	$0-\left(\frac{16}{4}+\frac{8}{3}-\frac{20}{2}-14\right)=\frac{52}{3}$	A1		correct value using limits correctly
	Area of trapezium $=\left(\frac{1}{2}(5+7) \times 2\right)=12$	B1		or rectangle plus triangle
	Area of $R=\frac{52}{3}-12=\frac{16}{3}$	A1	4	$5 \frac{1}{3}$ or 5.3
	Total		12	
(a)(ii)	NMS either ($-2,5$) or (3,10) scores SC1 and both correct scores SC3			
	Allow "when $x=3, \quad y=10$ and when $x=-2, \quad y=5$ " instead of coordinates for final A1			
(c)	Condone missing brackets around "their" -2 for M1 and if recovered and correct on next line for A1 Area of trapezium found by integration $\int_{-2}^{0}(x+7) \mathrm{d} x=\left[\frac{x^{2}}{2}+7 x\right]_{-2}^{0}=12$ earns B1 Accept rounded answer of 5.3 etc after correct exact answer seen.			

Q	Solution	Mark	Total	Comment
7	$(x-5)^{2}+(y--6)^{2}$ $(x-5)^{2}+(y+6)^{2}=20$	M1 A1 A1	3	one term correct LHS correct with perhaps extra constant terms equation completely correct
	$\begin{aligned} & C(5,-6) \\ & \text { (radius }=\text {) } \sqrt{20} \\ & \end{aligned}$	B1 \checkmark	1	correct or ft their (a) correct or ft 'their' \sqrt{k} provided RHS >0
		M1 A1	2	
	$\operatorname{Grad} A C=\frac{-6--2}{5-3} \quad(=-2)$	M1		correct unsimplified, ft their coords of C
	$\text { Grad of tangent }=\frac{1}{2}$	B1 \checkmark		ft their $-1 / \operatorname{grad} A C$
	Equation of tangent is $(y--2)=" \text { their } \frac{1}{2} "(x-3)$	M1		clear attempt at tangent not normal through (3, -2)
	$y+2=\frac{1}{2}(x-3)$	A1		correct equation in any form but $y--2$ must be simplified to $y+2$
	$x-2 y=7$	A1 cso	5	
(d)	$A B^{2}+(\text { their } r)^{2}=6^{2}$	M1		Pythagoras used with 6 as hypotenuse
	$A B^{2}=16$	A1		values correct with $(2 \sqrt{5})^{2}=20 \mathrm{PI}$
	Hence $A B=4$	A1cso	3	notation all correct
	Total		14	
(a)	$(x-5)^{2}+(y--6)^{2}=(\sqrt{20})^{2}$ scores full m If final equation is correct then award 3 mar If final equation has sign errors then check to Example $(x-5)^{2}+(y+6)^{2}-25+36+41=0$ final equation is offered as $(x-5)^{2}+(y+6)$ Example $(x-5)^{2}+(y-6)^{2}=20$ earns M1	rks ks, treatin o see if M earns M1 $=20$ the A0 ; Exa	earlier 1 is earn A1 but award ple (x	ines with extra terms etc as rough working. d. this is part of preliminary working and M1 A1 A1. $5)^{2}+(y-6)^{2}=20$ earns M0
(b)(ii)	Candidates may still earn A1 here provided Example $(x+5)^{2}+(y-6)^{2}=20$ earns M0 NMS or no $\sqrt{20}$ seen; " radius $=2 \sqrt{5}$ " sco	RHS of c n (a) but res SC1	cle equa can then since que	tion is 20 . earn M1 A1 for radius $=\sqrt{20}=2 \sqrt{5}$ tion says "show that"
(c)	May earn second M1 for attempt to find c using $y=m x+c$ if clearly finding tangent and not normal. If their gradient of $A C$ is m, then use of $-m$ or $1 / m$ with correct coordinates can earn second M1			
(d)	Example $A B=36-(2 \sqrt{5})^{2}=16=4$ scores M1 A1 A0 for poor notation NMS $A B=4$ scores $\mathbf{S C 1}$ since no evidence that exact value of radius has been used.			

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Mark \& Total \& Comment \\
\hline \begin{tabular}{l}
(a) \\
(b)
\end{tabular} \& \& \begin{tabular}{l}
M1 \\
A1cso \\
M1 \\
A1 \\
M1 \\
A1
\end{tabular} \& 2

4 \& | Correctly multiplied out with >0 |
| :--- |
| all working correct |
| correct factors or correct use of formula as far as $\frac{1 \pm \sqrt{289}}{12}$ |
| use of sign diagram or graph with CVs clearly shown |
| or $\quad \frac{3}{2} \geqslant x \geqslant-\frac{4}{3}$ |

\hline \& Total \& \& 6 \&

\hline \& TOTAL \& \& 75 \&

\hline (a)

(b) \& \multicolumn{4}{|l|}{| Allow final answer in form $-\frac{1}{3}>x$. |
| :--- |
| For second M1, if critical values are correct then sign diagram or sketch must be correct with correct CVs marked. |
| However, if CVs are not correct then second M1 can be earned for attempt at sketch or sign diagram but their CVs MUST be marked on the diagram or sketch. |
| Final A1, inequality must have x and no other letter. |
| Final answer of $x \leqslant \frac{3}{2}$ AND $x \geqslant-\frac{4}{3}$ (with or without working) scores 4 marks. |
| (A) $-\frac{4}{3}<x<\frac{3}{2}$ |
| (B) $x \leqslant \frac{3}{2} \quad$ OR $\quad x \geqslant-\frac{4}{3}$ |
| (C) $x \leqslant \frac{3}{2}, x \geqslant-\frac{4}{3}$ |
| (D) $-\frac{4}{3} \leqslant k \leqslant \frac{3}{2}$ |
| with or without working each score 3 marks (SC3) |
| Example NMS $\frac{4}{3} \leqslant x \leqslant \frac{3}{2}$ scores M0 (since one CV is incorrect) |
| Example NMS $x<\frac{3}{2}, x<-\frac{4}{3}$ scores M1 A1 M0 (since both CVs are correct) |}

\hline
\end{tabular}

