

A-LEVEL MATHEMATICS

Mechanics 2B – MM2B Mark scheme

6360 June 2014

Version/Stage: Final V1.0

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Copyright © 2014 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Μ	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\checkmark or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
С	Candidate
sf	significant figure(s)
dp	decimal place(s)

Key to mark scheme abbreviations

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Mark	Total	Comment
1 (a)	$\text{KE} = \frac{1}{2} \times 3 \times 8^2$	M1		
	= 96 J	A1	2	
(b)	Change in PE; $mgh = 3 \times 9.8 \times 13$ = 382.2 J = 382 J	M1 A1	2	SC1 380
(c)(i)	Salmon's KE when it reaches the sea = 96 + 382.2J = 478 J	M1 A1	2	(a) + (b) [both non zero] Ft [one correct]
(ii)	Speed of salmon is $\sqrt{\frac{478.2}{\frac{1}{2} \times 3}}$	M1		
	$= 17.8549 \text{ ms}^{-1}$ = 17.9 ms^{-1}	A1	2	Accept 17.8,17.85,17.855, 17.86
	Total		8	

Q	Solution	Mark	Total	Comment
2 (a)	Using $F = ma$	M1		M1 either term
				correct oe
	$a = 4e^{-2t} \mathbf{i} - 2t^3 \mathbf{j}$	A1	2	
(b)	Ĉ.	М1		M1 for either term
(U)	$v = \int adt$	1011		correct
	$2 e^{-2t} = \frac{1}{2} t^{4} + 2$	A1		Ft from (a)
	$= -2e^{-1}I - \frac{1}{2}l^{-1}J + c$			oe Condone no $+$ c
	When $t = 0$,			
	-7i - 4j = -2i + c	m1		
	$\mathbf{c} = -5\mathbf{i} - 4\mathbf{j}$			
	$\mathbf{v} = -(2 e^{-2t} + 5)\mathbf{i} - (\frac{1}{2}t^4 + 4)\mathbf{j}$	A1	4	CAO
(c)	When $t = 0.5$,			
	$\mathbf{v} = -(2 e^{-1} + 5)\mathbf{i} - (\frac{1}{2} \times 0.5^4 + 4)\mathbf{i}$	M1A1		
	= -5.7357i - 4.03125i			
	Speed is $\sqrt{5.736^2 \pm 4.031^2}$	M1		
	-70106	Δ1	4	
	or 7.01 ms^{-1}	711		MR A0 in (a) and last
	01 7.01 115			part of (c)
				Do not accept 7
	Total		10	

Q	Solution	Mark	Total	Comment
3	\overline{X} =			M1 for at least 4
	$\frac{4 \times 11 + 3 \times 3 + 7 \times 5 + 1 \times 1 + 5 \times 7}{4 + 3 + 7 + 1 + 5}$	M1		correct
	$=\frac{124}{20}$ or 6.2	A1		Accept $\frac{124}{20}$
	\overline{Y} =	M1		
	$\frac{4 \times 2 + 3 \times 6 + 7 \times 9 + 1 \times 4 + 5 \times 6}{20}$			
	$=\frac{123}{20}$ or 6.15	A1		
	\therefore Centre of mass is at (6.2, 6.15)	A1ft	5	Do not accept $\frac{124}{20}$ etc
				(6.15,6.2)M2A2 If lamina not used SC2; ie M1,M1
	Total		5	

Q	Solution	Mark	Total	Comment
4 (a)	20 revolutions per minute			
	$= 40\pi$ radians per minute	B1		or $\frac{1}{2}$ revolutions per
	$=\frac{2\pi}{3}$ radians per second	B1	2	second Accept 2.09
(b)	Resolve vertically			
	$T\cos 35 = 0.8g$	M1 A1		M1 if Tsin35 used;
	<i>T</i> = 9.5708 = 9.57 N	A1	3	need g
(c)	Resolve horizontally			
(-)	$T \sin 35 = m\omega^2 r$	M1		M1 condone Tcos35
				and $m \frac{v^2}{r}$
	9.57 sin 35 = $0.8 \times r \times \left(\frac{2\pi}{3}\right)^2$	A1 A1		A1 for either side
	r = 1.564	A1	4	
	Radius is 1.56 m			Condone 1.57
	Total		9	

Q	Solution	Mark	Total	Comment
5 (a)	Using conservation of energy :			
	$\frac{1}{2}mv^{2} = \frac{1}{2}mv^{2} + 2amg$	M1		M1 for 3 [or 4] terms
	$2^{mv_p} = 2^{mv_Q} + 2amg$	A1		2 KE and 1[or 2] PE
	$v_Q^2 = 49ag - 4ag$	M1		
	$v_Q^2 = 45ag$			
	$v_Q = \sqrt{45ag}$	A1	4	$v_Q = 3\sqrt{5ag}$
(b)	At Q, T + mg = $\frac{mv_Q^2}{2}$	M1A1		M1 for correct 3
	a T 45			terms
	T = m.45 g - mg	A 1	2	
	= 44mg	Al	3	
	Total		7	

Q	Solution	Mark	Total	Comment
6 (a)	Using $F = ma$			
	$-0.3mv^{\frac{1}{3}} = m\frac{dv}{dt}$			
	$\therefore \frac{dv}{dt} = -0.3v^{\frac{1}{3}}$	B1		Need substitution for a
	$\int v^{-\frac{1}{3}} dv = -\int 0.3 dt$	M1		
	$\frac{3}{2}v^{\frac{2}{3}} = -0.3 t + c$	A1A1		A1 for each side no – sign [B0] could get M1A1
	When $t = 0, v = 8,$ $\therefore c = 6$ $\frac{3}{2}u_{3}^{2} = -0.3 t + 6$	A1		8
	$v^{2} = -0.2 t + 4$ $v = (4 - 0.2t)^{\frac{3}{2}}$	A1	6	
(b)	When $v = 0$, $4 - 0.2 t = 0$ t = 20	M1 A1	2	
(c)	Integrating $v = (4 - 0.2t)^{\frac{3}{2}}$,			M1 for power of 5/2
	$x = -2(4-0.2t)^{\overline{2}} + d$	M1A1		A1 correct [condone no d]
	When $t = 0$, $x = 0$, $\Rightarrow d = 64$			
	$x = -2(4 - 0.2t)^{\frac{5}{2}} + 64$	A1		
	When speed is 0 ms^{-1} , $t = 20$	M 1		
	<i>x</i> = 64	A1	5	
	Total		13	

Q	Solution	Mark	Total	Comment
7(a)		B2	2	Need 5 forces
				correct
	$\setminus B$			ignore labels
	S S			Ignore labers
	$\langle C$			
				B1 for 4 forces
				correct
	88 9			
	4m			
	$22g$ \land R			
	60°			
	F A			
	Resolve horizontally			
(b)	$\mathbf{F} = \mathbf{S} \cos 30$	B1		
	Resolve vertically			
	$\mathbf{R} = 88\mathbf{g} + 22\mathbf{g} - \mathbf{S}\sin 30$	B1		
	Moments about A			M1 for correct
	$22g \cdot 3\cos 60 + 88g \cdot 4\cos 60 = 5 S$	M1		moments about
	5S = 209g			any point
				• •
				Resolve once B1
				moments twice
				is M1A1 B1
	$S = 41.8 \times [400.64]$	Δ 1		15 101111, 21
	5 - 41.08 [407.04]	AI		
	Using $F = \mu R$;			R =873.18
	$S \cos 30 = \mu(110g - S \sin 30)$	M1		F =354.758
	$S\sqrt{3}$			
	$\mu = \frac{1}{220g-S}$			
	41.8√3			
	$-\frac{220-41.8}{2}$			
	$=\frac{41.8\sqrt{3}}{178.2}$			Accept 0.407,
	1/0.2 $19\sqrt{3}$ 0.406	A1	6	0.4063,0.41
	$=$ $\frac{1}{81}$ = 0.406		-	not 0.4
	If S is horizontal, B1 in (a)			
	In (b) M1 [moments], M1 for friction.B1 [2			
	resolve] 0.439 SC3			
	-			
	Tatal		0	
	lotal		ð	

Q	Solution	Mark	Total	Comment
8 (a)	Resolve perpendicular to plane			
	$R = mg \cos 20$	M1		
	$F = \mu R = \mu mg \cos 20$	m1		
	$= 0.8 \times 4 \times gcos 20$			or 0.8 x 36.8359
	= 29.468 = 29.5 N	A1	3	
(b)(i)	As particle moves from C to B; Constant friction acts. Work done by friction is	B1		
	$(x + 2) \times 29.468$			
	Change in PE is mg(x+2)sin 20	B1		
	Initial EPE = $\frac{\lambda x^2}{2l}$ = $\frac{120 \times (x-1.5)^2}{2 \times 1.5}$			
	$= 40 (x - 1.5)^2$	B1		
	Final EPE = $\frac{120 \times (0.5)^2}{2015}$ = 10	B1		
	$(x + 2) \times 29.468 + mg(x+2)sin 20$ = 40 (x - 1.5) ² - 10	M1A1 A1		M1 for 4 of these terms at least 2 correct A1for 3 terms correct with correct signs A1 for equation totally
	$40 x^{2} - 162.875 x - 5.75 = 0$ x = 4.1069 or -0.035 \therefore x = 4.11	A1	8	condone 4.10, 4.12, and anything in between,
(ii)	Using $T = \frac{\lambda x}{l}$			
	Tension when particle is at B is $\frac{120\times0.5}{1.5}$ = 40 Frictional force is 29.468 Gravitational force is mg sin 20	B1		
	= 13.407	B1		For both 29.4. and 13.4.
	Using $F = ma$ 4a = 40 + 13.407 - 29.468	M1		Need all terms & correct
	= 23.938 Acceleration is 5 984			
	$= 5.98 \text{ ms}^{-2}$	A1	4	condone 5.99,5.984,5.985
	Total		15	
	TOTAL		75	