AQA

A-LEVEL MATHEMATICS

Mechanics 4 - MM04
Mark scheme

6360
June 2014

Version/Stage: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or marks and is for method and accuracy
E	mark is for explanation
Vor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Mark	Total	Comment
1	$\begin{aligned} & \mathbf{r}_{1} \mathbf{x} \mathbf{F}_{1}=\left\|\begin{array}{ccc} \boldsymbol{i} & 1 & 3 \\ \boldsymbol{j} & -2 & 1 \\ \boldsymbol{k} & a & 4 \end{array}\right\|=\left(\begin{array}{c} -8-a \\ 3 a-4 \\ 7 \end{array}\right) \\ & \mathbf{r}_{2} \mathbf{x} \mathbf{F}_{2}=\left\|\begin{array}{ccc} \boldsymbol{i} & 6 & \frac{1}{2} \\ \boldsymbol{j} & 2 & -1 \\ \boldsymbol{k} & 8 & \frac{1}{2} a \end{array}\right\|=\left(\begin{array}{c} a+8 \\ 4-3 a \\ -7 \end{array}\right) \end{aligned}$	M1		Use of $\mathbf{r x F}$ or $\mathbf{F x r}$ - at least two components correct in any vector
	$\mathrm{r}_{3} \mathrm{XF}_{3}=\left\|\begin{array}{ccc} \boldsymbol{i} & 1 & a \\ \boldsymbol{j} & 0 & 2 \\ \boldsymbol{k} & -1 & -a \end{array}\right\|=\left(\begin{array}{l} 2 \\ 0 \\ 2 \end{array}\right)$	A(2,1,0)		A1 - Two vector products fully correct A2 - All three correct
	$\mathbf{r}_{1} \mathbf{x} \mathbf{F}_{1}+\mathbf{r}_{2} \mathbf{x F}_{2}+\mathbf{r}_{3} \mathbf{x} \mathbf{F}_{3}=\left(\begin{array}{l} 2 \\ 0 \\ 2 \end{array}\right)$ a cancels - hence independent of a	m1A1F E1		m1 - Dependent on summing three vector products and the first M1 A1F - their correct sum - following through one slip only Comment indicating independent of a CSO
	Total		6	

Q	Solution	Mark	Total	Comment
2(a)	Volume $=\pi \int_{0}^{a} a^{2} x d x$	M1		Use of correct formula seen
	$=\pi{ }_{0}^{a}\left[\frac{a^{2} x^{2}}{2}\right]$	A1		Correct integration
	$=\frac{1}{2} \pi a^{4}$	A1	3	CSO - Printed answer
(b)	$\pi \int_{0}^{a} x y^{2} d x=\pi \int_{0}^{a} a^{2} x^{2} d x$			
	$=\pi{ }_{0}^{a}\left[\frac{a^{2} x^{3}}{3}\right]$	M1		Correct use of formula - integrating $k x^{2}$
	$=\frac{1}{3} \pi a^{5}$	A1		CAO
	$\bar{x}=\frac{\frac{1}{3} \pi a^{5}}{\frac{1}{2} \pi a^{4}}$	M1		Their answer for $\pi \int_{0}^{a} x y^{2} d x \div$ part (a)
	$=\frac{2 a}{3}$	A1	4	CAO
(c)	$\tan 30^{\circ}=\frac{\text { distance of cof } m \text { from base }}{\text { radius of base }}$	M1		Forming an equation using $\tan 30^{\circ}$ or tan 60^{0}
	$\tan 30^{\circ}=\frac{\frac{a}{3}}{a^{\frac{3}{2}}}$	A1		Fully correct equation formed - correct expressions for distances seen - accept equivalent, unsimplified expressions
	$a^{-\frac{1}{2}}=\sqrt{3}$	m1		Solving their equation using correct value for $\tan 30^{\circ}$ or $\tan 60^{\circ}$ - dependent on first M1
	$a=\frac{1}{3}$	A1F	4	Correct solution to their equation - must have both Ms above
	Total		11	

Q	Solution	Mark	Total	Comment
3	MI for particle at $\mathrm{B}=2(0.3)^{2}=0.18$	M1		Use of $m d^{2}$ at least once
	MI for particle at $\mathrm{D}=m(0.4)^{2}=0.16 \mathrm{~m}$	A1		Correct MI for both B and D
	MI for particle at $\mathrm{C}=6(0.5)^{2}=1.5$	A1		Correct MI for particle C
				All terms can be unsimplified - M0 if formulas for rods are used
	Forming an equation,			
	$1.68+0.16 m=2.24$	m1		Forming an equation to find m dependent on first M1
	Hence $m=\frac{0.56}{0.16}=3.5$	A1	5	Correct value of m obtained - CAO
	Total		5	

Q	Solution	Mark	Total	Comment
4 (a)	Consider forces horizontally at A,			
	$\mathrm{T}_{\mathrm{AB}}=\mathrm{T}_{\mathrm{AE}} \cos 60^{\circ}=50 \cos 60^{\circ}=25 \mathrm{~N}$	B1		CAO
	$A B$ is in tension	E1	2	CAO
(b)	Consider forces vertically at A,			
	$\mathrm{R}_{\mathrm{A}}=\mathrm{T}_{\mathrm{AE}} \sin 60^{\circ}=50 \sin 60^{\circ}=25 \sqrt{3}$	B1	1	CAO - accept any equivalent (eg 43.3)
(c)	Resolving vertically for whole framework, $x=\mathrm{R}_{\mathrm{A}}+\mathrm{R}_{\mathrm{C}}$			
	By symmetry, $\mathrm{R}_{\mathrm{A}}=\mathrm{R}_{\mathrm{C}}$	M1		Resolving and use of symmetry seen
	$x=2 \mathrm{R}_{\mathrm{A}}=50 \sqrt{3}$	A1F	2	Follow through part b) $x=$ twice their answer to part b) accept any equivalents (eg 86.6)
(d)	$\mathrm{T}_{\mathrm{ED}}=\mathrm{T}_{\mathrm{AE}} \cos 60^{\circ}+\mathrm{T}_{\mathrm{EB}} \cos 60^{\circ}$	M1		M1 Resolving forces horizontally at E (or D) - at least one correct term seen on right hand side
	Considering vertical forces at E , Rod EB must be in tension with magnitude 50N			
	Hence $\mathrm{T}_{\mathrm{ED}}=50 \mathrm{~N}$	A1		CAO
	ED is in compression	E1	3	CAO
	Total		8	

Q	Solution	Mark	Total	Comment
5(a)	$\binom{6-2 p}{p-3}$	B1	1	
(b)	Moments about O $=-1(3)-5(2)-5(4)+p(3)$	M1 A1 A1 A1	4	Two pairings correct - force x distance All pairings correct All signs consistent
	- $3 p-33$ or $3(p-11)$		4	c $=3$ (or -3 if directions interchanged)
(c)	$6-2 p=0$ and $p-3=0$	M1		Setting components/resultant force equal to zero from part a)
	Hence $p=3$ (is consistent solution) Magnitude = 24	A1		Correct and consistent p value obtained Correct magnitude of couple stated
	Sense is clockwise	B1		Correct sense of couple stated
	No linear resultant and non-zero moment therefore is a couple	E1	5	Fully correct deduction concerning couple
(d)(i)	$\mathbf{F}=\binom{-16}{8}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	2	M1 -Substitution of their p value in a) A1 Correct \mathbf{F} seen - CAO
(ii)	When $p=11$, resultant moment about O is 0 hence line goes through origin	M1		Use of zero moment seen or comment made
	Line L is $y=-\frac{1}{2} x$	A2	3	CAO
	Total		15	

Alternative for \mathbf{b})

$\left|\begin{array}{lll}\boldsymbol{i} & 0 & 1 \\ \boldsymbol{j} & 3 & 2 \\ \boldsymbol{k} & 0 & 0\end{array}\right|=\left(\begin{array}{c}0 \\ 0 \\ -3\end{array}\right) \quad \mathbf{M 1}-$ One determinant attempted - at least two components correct
$\left|\begin{array}{ccc}\boldsymbol{i} & 2 & -2 p \\ \boldsymbol{j} & 0 & -5 \\ \boldsymbol{k} & 0 & 0\end{array}\right|=\left(\begin{array}{c}0 \\ 0 \\ -10\end{array}\right) \quad$ A1 - two determinants evaluated correctly
$\left|\begin{array}{lll}\boldsymbol{i} & 3 & 5 \\ \boldsymbol{j} & 4 & p \\ \boldsymbol{k} & 0 & 0\end{array}\right|=\left(\begin{array}{c}0 \\ 0 \\ 3 p-20\end{array}\right) \quad$ A1 - All three correct
Total $=\left(\begin{array}{c}0 \\ 0 \\ 3 p-33\end{array}\right)$
Hence $\mathrm{c}=3$
A1 - correct sum obtained or $c=3$ stated from fully correct working

Q	Solution	Mark	Total	Comment
6(a)	$\begin{array}{\|l\|} \mathrm{T}_{1}-2 m g=2 m a \\ 4 m g-\mathrm{T}_{2}=4 m a \end{array}$	M1		Forming two correct equations of motion for particles
	$2\left(\mathrm{~T}_{1}-2 m g\right)=4 m g-\mathrm{T}_{2}$	m1		Correct elimination of a (acceleration)
	Hence $2 \mathrm{~T}_{1}+\mathrm{T}_{2}=8 \mathrm{mg}$	A1	3	Fully shown - printed answer - CSO
(b)	$\begin{aligned} & \text { Using C }=\mathrm{I} \ddot{\theta} \\ & \mathrm{rT}_{2}-\mathrm{rT}_{1}-\frac{1}{2} m g r=6 m r^{2} \ddot{\theta} \end{aligned}$	M1A1		Correct use of equation of motion for the pulley. M1 for LHS with inclusion of all turning forces. A1 Fully correct
	Cancelling r gives $\mathrm{T}_{2}-\mathrm{T}_{1}-\frac{1}{2} m g=6 m r \ddot{\theta}$	A1	3	CSO - printed answer
(c)	From a) adding equations gives $\mathrm{T}_{1}-\mathrm{T}_{2}+2 \mathrm{mg}=6 \mathrm{ma}$			
	$\text { In b) } \mathrm{T}_{2}-\mathrm{T}_{1}-\frac{1}{2} m g=6 m a$			
	Hence $\mathrm{T}_{2}-\mathrm{T}_{1}-\frac{1}{2} m g=\mathrm{T}_{1}-\mathrm{T}_{2}+2 m g$ Gives $\mathrm{T}_{2}-\mathrm{T}_{1}=\frac{5 m g}{4}$	M1A1		M1 Use of elimination to obtain a second equation involving T_{1} and T_{2} A1 Correct equation obtained
	Solving with a) $2 \mathrm{~T}_{1}+\mathrm{T}_{2}=8 \mathrm{mg}$	m1		Solving a pair of equations to obtain expressions for T_{1} and T_{2}. Dependent on first M1
	$\text { Gives } \mathrm{T}_{1}=\frac{9 m g}{4} \text { and } \mathrm{T}_{2}=\frac{7 m g}{2}$	A1	4	Both T_{1} and T_{2} correct - CSO
(d)	Using $\mathrm{T}_{2}-\mathrm{T}_{1}-\frac{1}{2} m g=6 m r \ddot{\theta}$	M1		Substituting their T_{2} and T_{1} and rearranging to obtain expression for $\ddot{\theta}$
	$\ddot{\theta}=\frac{g}{8 r}$	A1F	2	Must involve g and r only
	Total		12	

Q	Solution	Mark	Total	Comment
7(a)(i)	$m=\pi a^{2} h \rho \text { or } \rho=\frac{m}{\pi a^{2} h}$	B1		Correct equation connecting m and ρ seen
	Mass of thin disc $=\pi a^{2} d x \rho$ MI of thin disc $=\frac{1}{2}\left(\pi a^{2} d x \rho\right) a^{2}$	M1		Formulating MI of elemental disc
	MI of cylinder $=\int_{0}^{h} \frac{1}{2} \pi a^{4} \rho d x={ }_{0}^{h}\left[\frac{1}{2} \pi a^{4} x \rho\right]$	A1		Integrating correctly
	$=\frac{1}{2} \pi a^{4} \frac{m}{\pi a^{2} h} h$	m1		Substituting correct limits and p - dependent on first M1
	$=\frac{1}{2} m a^{2}$	A1	5	Obtaining printed answer - CSO
	$\begin{aligned} & \text { Alternative for } \mathbf{(a) (i)} \mathbf{(i)} \\ & m=\pi a^{2} h \rho \text { or } \rho=\frac{m}{\pi a^{2} h} \end{aligned}$	(B1)		Correct equation connecting m and ρ seen
	MI of cylindrical shell $=2 \pi r h \rho r^{2} d r$	(M1)		Formulating MI of elemental shell
	MI of cylinder $=\int_{0}^{a} 2 \pi r h \rho r^{2} d r={ }_{0}^{a}\left[\frac{2 \pi r^{4} h \rho}{4}\right]$	(A1)		Integrating correctly
	$=\frac{2}{4} \pi a^{4} \frac{m}{\pi a^{2} h} h$	(m1)		Substituting correct limits and p - dependent on first M1
	$=\frac{1}{2} m a^{2}$	(A1)	(5)	Obtaining printed answer - CSO
(b)	Given cylinder MI $=\frac{1}{2}(2 m)(3 a)^{2}$	B1		Correct adjustment of formula in part a) - can be unsimplified
	Using parallel axis theorem $\begin{aligned} & \mathrm{I}_{\mathrm{AXIS}}=\frac{1}{2}(2 m)(3 a)^{2}+2 m(3 a)^{2} \\ & =27 m a^{2} \end{aligned}$	M1A1 A1	4	M1 Correct structure of parallel axis theorem A1 Distance and masses correct CAO
(c)(i)	Forming an energy equation $\frac{1}{2}\left(27 m a^{2}\right) \dot{\theta}^{2}=(2 m g)(3 a \sin \theta)$	$\begin{gathered} \text { M1 } \\ \text { A1F } \\ \text { A1 } \end{gathered}$		Follow through part b) throughout Forming an equation using KE gain = PE loss Their correct kinetic energy used (LHS) Correct potential energy used (RHS)
	Hence $\dot{\theta}^{2}=\frac{4 g \sin \theta}{9 a}$	A1F		Rearranging to get $\dot{\theta}^{2}$ - can be unsimplified
	Differentiating gives $2 \dot{\theta} \ddot{\theta}=\frac{4 g \cos \theta}{9 a} \dot{\theta}$	M1		Differentiating correctly
	Hence $\ddot{\theta}=\frac{2 g \cos \theta}{9 a}$	A1F	6	Rearranging to get $\ddot{\theta}$ - can be unsimplified

Q	Solution	Mark	Total	Comment
c(ii)	Using F= ma tangentially $2 m g \cos \theta-\mathrm{Y}=(2 m)(3 a) \ddot{\theta}$ $\begin{aligned} & \mathrm{Y}=2 m g \cos \theta-(2 m)(3 a)\left(\frac{2 g \cos \theta}{9 a}\right) \\ & \mathrm{Y}=\frac{2 m g \cos \theta}{3} \end{aligned}$	M1A1 A1F	3	M1 Use of $\mathrm{F}=\mathrm{ma}$ - one side correct A1 Both sides correct Can be unsimplified - follow through substitution of their $\ddot{\theta}$ from c)i)
(c)(i) (c)(ii)	Alternative for part (c)(i) - final two marks $I \ddot{\theta}=(2 m g)(3 a \cos \theta)$ Hence $\ddot{\theta}=\frac{2 g \cos \theta}{9 a}$ Alternative to part (c)(ii) Take moments about axis of cylinder gives $(3 a) \mathrm{Y}=\frac{1}{2}(2 m)(3 a)^{2} \ddot{\theta}$ Hence $\mathrm{Y}=\frac{2 m g \cos \theta}{3}$	(M1) (A1F) (M1A1) (A1F)	(3)	Follow through part b) throughout Correct use of $\mathrm{C}=\mathrm{I} \ddot{\theta}$ Rearranging to get $\ddot{\theta}$ - can be unsimplified Use of moments - one side correct for M1 Both sides correct for A1 Can be unsimplified - follow through substitution of their $\ddot{\theta}$ from c)i)
	Total		18	
	TOTAL		75	

