AQA

GCSE
 Mathematics (Linear)

Foundation Tier Paper 1
Mark scheme

43651F
November 2015

Version 1.0 Final.

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

AQA

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.
If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M	Method marks are awarded for a correct method which could lead to a correct answer.
A	Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
B	Marks awarded independent of method.
ft	Follow through marks. Marks awarded for correct working following a mistake in an earlier step.
SC	Special case. Marks awarded for a common misinterpretation which has some mathematical worth.
M dep	A method mark dependent on a previous method mark being awarded.
B dep	A mark that can only be awarded if a previous independent mark has been awarded.
oe	Or equivalent. Accept answers that are equivalent. e.g. accept 0.5 as well as $\frac{1}{2}$
[a, b]	Accept values between a and b inclusive.
[a, b)	Accept values $\mathrm{a} \leq$ value $<\mathrm{b}$
3.14...	Accept answers which begin 3.14 e.g. 3.14, 3.142, 3.1416
Q	Marks awarded for quality of written communication
Use of	It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a candidate has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the candidate. In cases where there is no doubt that the answer has come from incorrect working then the candidate should be penalised.

Questions which ask candidates to show working

Instructions on marking will be given but usually marks are not awarded to candidates who show no working.

Questions which do not ask candidates to show working

As a general principle, a correct response is awarded full marks

Misread or miscopy

Candidates often copy values from a question incorrectly. If the examiner thinks that the candidate has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Paper 1 Foundation Tier

Q	Answer	Mark	Comments
1a	Evens	B1	
1b	Impossible	B1	
1c	Unlikely	B1	
2	$\frac{3}{2}$ or $\frac{2}{3}$ seen or $\frac{24}{3}$ or $120 \div 15$ or build up to at least 12 $1 \frac{1}{2}, 3,4 \frac{1}{2}, 6,7 \frac{1}{2}, 9,10 \frac{1}{2}, 12$ or correct partitioning of 12 eg $3+3+3+3=1 \frac{1}{2}+1 \frac{1}{2}+3+3+3$	M1	Allow one error in build up Partitioning must get as far as two $1 \frac{1}{2} \mathrm{~s}$
	8	A1	

3	$500-(149+55)$ or 204 or 351 or 445	M1	oe Allow mixed units
	$(£) 2.96(\mathrm{p})$	A1	

$\mathbf{4}$	1.04	1.34	$1.4(0)$	1.43	B1

$\mathbf{5 a}$	28	B1	

$\mathbf{6 a}$	Arrow at 640	B1	Accept any clear indication Must be over halfway between 600 and 650 and less than 650

6b	$\begin{aligned} & 2.38 \text { or } 238 \\ & \text { and } \\ & 0.93 \text { or } 93 \end{aligned}$	M1		
	(£)1.45	A1	Allow £1.45p	
	Additional guidance			
	Allow transcription or misread errors if student clearly selecting 2.38 and 93 and not a different value from the table eg $2.28-93$ 2.38-98 2.38-1.24 (wrong row)			M1A0 M1A0 MOAO
	Answer only of (£)1.45(p)			M1A1

Q	Answer	Mark	Comments
	Repeated addition $1.24+1.24+1.24(+\ldots)$ or build up $1.24,2.48,3.72, \ldots$ or repeated subtraction from 10 $10-1.24-1.24-1.24(-\ldots)$ or build down $10,8.76,7.52,6.28, \ldots$ or 3.72 or 4.96 or 6.20 or 7.44 or 8.68 or 9.92 or 11.16 seen or $12.40-1.24$ or 8×1.24 or 9×1.24	M1	Allow mixed units Allow 1.25 used Repeated addition/ subtraction or build up/
	8	A1	With no arithmetic errors seen

$\mathbf{7}$	Parallelogram joined to 'no lines of symmetry' Rectangle joined to 'all angles equal' Rhombus joined to 'all sides equal'	B2	B1 one correct

$\mathbf{8 a}$	2.5	B1	oe eg $\frac{10}{4}$ or $\frac{5}{2}$ or $2 \frac{1}{2}$ or 2.50
$\mathbf{8 b}$	-10	B2	B1 -14

$\mathbf{9 a}$	7	B1	

$\mathbf{9 b}$	$(7+11+8+12+7) \div 5$ or $45 \div 5$	M1	Condone missing brackets
	9	A1	

Q	Answer	Mark	Comments

10a	0.45 and 30%	B1	

10b	20% and $\frac{1}{5}$	B1	

10c	$\frac{1}{3}$	B1	

12a	11 and 23	B2	B1one correct and no more than one incorrect or both correct and no more than one incorrect

| 12b | Any two primes that add to a cube
 eg (3, 5), (3, 61), (5, 59), (11, 53),
 $(17,47),(23,41)$ etc | B2 | B1one prime and any other number that
 add to a cube number
 eg (1, 7), (2, 6), (2, 25), (7, 57) |
| :---: | :--- | :---: | :--- | :--- |

Q	Answer	Mark	Comments

$180-81$ or 99	M1	Angle may be shown on diagram	
$360-$ (their $99+74+32$) or $360-205$	M1 dep		
	155	A1	
	Additional Guidance		
	155 must not come from $81+74$	MOM0A0	
99 seen for interior angle at D even if other working seen	M1		

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

14		$\frac{\mathrm{M} 1}{\mathrm{M} 1}$							
			oe If a 'build up' method used to work out 25% or 75%, must be a fully correct method				M1		
							A1		
			Strand (iii)				Q1ft		
		Additional Guidance							
		$\begin{aligned} & 150+360=510 \\ & 0.2 \times 600=£ 120 \\ & 720 \div 4 \times 3=£ 540 \end{aligned}$ Shop B					M1 M1 M1 AO Q1		
		$\begin{aligned} & 150+360=410 \\ & 0.8 \times 600=£ 480 \\ & 720 \div 4=£ 180 \end{aligned}$ Shop C							M1 M1 M1 AO Q0
		$\begin{aligned} & 150+60=£ 210 \\ & 0.8 \times 600=£ 480 \\ & 720 \div 4 \times 3=£ 540 \end{aligned}$ Shop A							M0 M1 M1 AO Q1
		Examples of build up							
		$10 \%=60,2 \times 60=£ 120$							M1
		$10 \%=600 \div 10=6,2 \times 6=£ 12$							M1
		$10 \%=7.2,20 \%=14.4,5 \%=3.6,25 \%=18$					MO		

Q	Answer	Mark	Comments

15 cont	Additional Guidance cont		
	Answer \qquad 78		$6 \quad \|$M1 MO MO A0
	Answer		
	$\begin{aligned} & 7 \times 7=36 \\ & 4 \times 7=26 \\ & 44-26=22 \\ & 22 \div 2=14,14+7=19 \\ & 7 \times 19=79 \end{aligned}$		M1 M1dep M1dep, A0

Q	Answer	Mark	Comments
$\mathbf{1 6 a}$	$\frac{9}{12}$ and $\frac{4}{12}$	M1	oe fractions with matching denominators eg $\frac{18}{24}$ and $\frac{8}{24}$
		A1	oe fraction eg $\frac{10}{24}$ Accept full decimal answer ie 0.416 or $0.416 r$

16b	Alternative method 1		
	One pair of fractions multiplied correctly eg $\frac{5}{18}\left(\times \frac{9}{10}\right)$ oe or $\frac{45}{3 \times 6 \times 10}$ or $\frac{1 \times 5 \times 9}{180}$	M1	
	$\frac{45}{180} \text { oe }$	A1	May be implied by answer $\frac{1}{4}$
	$\frac{1}{4}$	A1ft	ft their fraction fully simplified if M1A0 awarded and all three fractions multiplied
	Alternative method 2		
	One numerator and one denominator cancelled correctly	M1	$\text { eg } \frac{1}{\not 2} \times \frac{5}{6} \times \frac{9^{3}}{10}$
	Complete correct cancelling shown $\frac{1}{\not \partial} \times \frac{\not D}{\not D} \times \frac{\phi}{2}_{2}^{10}$ or $\frac{3}{12}$ or $\frac{5}{20}$ or $\frac{9}{36}$ or $\frac{15}{60}$	A1	Ignore further incorrect cancelling once M1A1 awarded
	$\frac{1}{4}$	A1	

Q	Answer	Mark	Comments
$\mathbf{1 7 a}$	$\frac{1}{2} \times 8 \times 4.5 \quad(=18)$ or $8 \times 4.5=36$ and $36 \div 2(=18)$	B1	Must see 8 and 4.5 used ie only 4 $\times 4.5$ is B0

17b	Alternative method 1		
	$9 \div 4.5$ and $24 \div 8$ oe	M1	May show sides of rectangle divided into 2 and 3 or 2×3
	their $2 \times$ their 3×2 or their 2×6 or their 3×4	M1dep	Rectangle divided into 12 triangles
	12	A1	
	Alternative method 2		
	9×24 or 216	M1	
	their $216 \div 18$	M1dep	
	12	A1	

18	A point that lies on the circumference, eg (4, 5), (10, 5), (7, 2), (7, 8)	B2	B1 $(4, y)$ or $(10, y)$ or $(x, 2)$ or $(x, 8)$ B1 for 4 or 10 clearly shown as min or max horizontal value B1 for 2 or 8 clearly shown as min or max vertical value
	Additional Guidance		
	NB circle measurement is 2.6 cm so if subtracted or added then rounded can lead to correct answer, but allow as 2.6 rounds to 3 , so mark answer line, ignore any other working		

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

19	$\begin{aligned} & 270 \div(3+2+1) \\ & \hline 45 \end{aligned}$			
			No wrong working seen	
	135, 90, 45		ft their 45 if all values correctly evaluated Values must be written in order Correct answer only full marks Incorrect answer only with 45 as a part ratio is not M1, A1 NB Build up method must be fully correct	
	Additional Guidance			
	Be careful of correct answers from wrong work			
	eg $270 \div 3=90,270 \div 2=135,270 \div 1=270$		135:90:270	M0
	eg $270 \div 3=90,270 \div 2=135,90 \div 2=45$,		135: 90 : 45	M0
	$\begin{aligned} & 270 \div 6=35 \\ & 105: 70: 35 \end{aligned}$			M1, A0 A1ft
	$\begin{aligned} & 270 \div 6=45 \\ & 145: 90: 45 \end{aligned}$			$\begin{aligned} & \mathrm{M} 1, \mathrm{~A} 1 \\ & \mathrm{~A} 0 \end{aligned}$
	$\begin{aligned} & 270 \div 6=45 \\ & 45: 135: 90 \end{aligned}$			$\begin{aligned} & \mathrm{M} 1, \mathrm{~A} 1 \\ & \mathrm{AO} \end{aligned}$
	$\begin{aligned} & 270 \div 6=41.2 \\ & 123.2: 82.4: 41.2 \end{aligned}$			M1, A0 AOft
	$\begin{aligned} & 270 \div 6=41.2 \\ & 123.6: 82.4: 41.2 \\ & 124: 82: 41 \end{aligned}$ Ignore rounding after correct ft			M1, A0 A1ft
	$\begin{aligned} & 270 \div 6=41.2 \\ & 124: 82: 41 \end{aligned}$ Answers do not ft. No intermediate values			M1, A0 AOft
	135: 45 : 90		No working, not in order	MO
	145:90:45		No working, not correct	M0
see over for further additional guidance				

19 cont	Additional Guidance cont	
	$3+2+1=5$	M1 A0
	A1ft	
	$270 \div 5=54$	
$162: 108: 54$	M0	

Q	Answer	Mark	Comments
20a	20 or 20 out of 120 or 20 in 120	B1	NB $\frac{20}{120}$ oe is B0

20b cont	Additional Guidance cont	
	Yes ticked and:	B1
	Lands more on 6	Q0
	6 has appeared as the mode number whereas 1 is the least amount	Q0
	Is heavier on number 6	Q0
	Landed on 638 times	Q0
	All number are about average except 1 and 6	Q0
	Answers should be more evenly spaced out	Q0
	Each time the number goes up, the frequency goes up	Q0

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

21 cont	Additional Guidance cont		
	$\begin{aligned} & 2 x+2=36 \\ & 2 x=38 \\ & x=19 \\ & 36,56,70,96 \\ & 63 \end{aligned}$	Median correct but as last value evaluated wrongly, follow through mark is lost	$\begin{aligned} & \text { M0 } \\ & \text { A0 } \\ & \text { A0 } \\ & \text { M1 } \\ & \text { A0ft } \end{aligned}$
	$\begin{aligned} & 2 x+2+3 x-1=36 \\ & 3 x=39 \\ & x=13 \\ & 28,38,46,67 \\ & 42 \end{aligned}$	Two errors in solving the equation	$\begin{aligned} & \text { M1 } \\ & \text { A0 } \\ & \text { A0ft } \\ & \text { M1 } \\ & \text { A1ft } \end{aligned}$

